Filter results

47639 results

Biography

Mark van Loosdrecht is Professor in Environmental Biotechnology at Delft University of Technology, The Netherlands. He graduated (MSc/PhD) from Wageningen University. His PhD research was a combination of Microbiology and Colloid Chemistry. He was appointed at Delft in 1988 and became Full Professor in 1999. His research is characterized by the combination of scientific understanding of complex systems and development of new processes. Dr. van Loosdrecht’s scientific interests are mainly related to biofilm processes, nutrient conversion processes and the role of storage polymers in microbial ecology. In particular, he is interested in new processes related to wastewater treatment and resource recovery. His research has resulted in several processes currently applied on full scale such as the BCFS process, Sharon process, Anammox process and Nereda process. He is active member of the International Water Association (IWA) and past chairman of the Biofilm and the Nutrient removal specialist groups. He is Editor-in-Chief of Water Research. He obtained several prizes for his work, including the Lee Kuan Yew Singapore Water Prize, Stockholm Water Prize and the IWA Grand Award. He is member of the Royal Dutch Academy of Arts and Sciences (KNAW) and the Dutch Academy of Engineering (AcTI) and the US National Academy of Engineering (NAE). He was awarded a knighthood in the order of the Dutch Lion. He has published over 700 scientific papers, has 15 patents and has supervised over 50 PhD students. Academic Degrees 1985 - MSc Environmental Engineering, Wageningen University MSc projects: Microbiology (6 months), Environmental Technology (6 months), Colloid and Surface Chemistry (5 months), Swiss Federal Inst. for Water Resources and Water Pollution Control (EAWAG), Switzerland, 4 months 1988 - PhD Topic: adhesion of bacteria and the effects of adhesion on the microbial physiology. Wageningen University (promotors: prof. A. Zehnder and prof. J. Lyklema) 2010 - Honorary Doctorate ETH-Zurich, Switzerland 2015 - Honorary Doctorate University of Ghent, Belgium Awards and Recognitions Honorary Member IWA (2020) Fellow Chinese Academy of Engineering Knight in the order of the Dutch Lion (since 2011) Fellow of the Royal Netherlands Academy of Arts and Sciences (KNAW) (since 2004) Fellow of the Dutch Academy of Engineering (AcTI) (since 2007) Fellow of the International Water Association (Since 2010) Member US National Academy of Engineering (since 2015) Honorary Doctorate ETH Zurich, Switserland (2011) Honorary Doctorate Gent University, Belgium (2015) Honorary professor at University of Queensland, Australia (2010 - ) Honorary professor Harbin Institute of Technology, China (2014 - ) Honorary professor Zhejiang University of Technology, China (2017 - ) IWA Grand Award (2008) Lee Kuan Yew Prize winner (2012) Stockholm Water Prize (2018 ) AEESP distinguished lecturer (2013/2014) Simon Stevin Master Award (2013 – 500.000 Euro) Gravitation Award (2013 – 4.000.000 Euro) Spinoza Award (2014 – 2.500.000 Euro) Professional positions 1988 – 1997 Assistant Professor in the section of Prof.dr.ir. J.J. Heijnen, department of Biochemical Engineering, Delft University of Technology 1997 – 1999 Associate Professor at the same department. 1999 – 2002 Anthonie van Leeuwenhoek Professor at TU-Delft 2003 – now Chair Professor and head of the section Environmental Biotechnology at TU-Delft 2008 – now Scientific Advisor Water Cycle Research at KWR Water Cycle Research Mark van Loosdrecht Full professor, Section Leader +31 15 2781618 M.C.M.vanLoosdrecht@tudelft.nl Room: B58. C2.190 twitter linkedin youtube

Sint-in-a-Box Copenhagen

Sint-in-a-Box Copenhagen 16 December 2021 17:30 - Location: BRUS, brewpub and restaurant It is that time of the year again! Back in the Netherlands the days are getting shorter and the temperature keeps dropping. Supermarkets have stocked up on pepernoten and chocolate letters. The discussion on which pepernoten taste best - chocolate-covered or not - has been held several times already, and this can only mean one thing… Sinterklaas will soon be visiting us, and you won't be forgotten! We would love to invite you to a Sinterklaas get-together in Copenhagen. The event will gather 4TU alumni living in the Copenhagen Capital Region and is sponsored by the Dutch Engineers Alumni Network (DEAN)*. This is a great opportunity to celebrate this truly Dutch tradition, while meeting new people and catching up with known faces from the local chapter. TU Delft alumnus Ricardo Ernesto Díaz will be hosting the event this year. See date and location below.** Sinterklaasborrel Copenhagen Thursday 16 December 2021 17:30 (local time) The Belgian Waffle Stop BRUS, brewpub and restaurant Guldbergsgade 29, 2200 Copenhagen Register The event is part of our programme ' Event in a Box ', where local alumni host their own alumni gatherings, with some help from TU Delft Alumni Relations. For this Sinterklaas edition, we will make sure there are enough pepernoten, Taai Taai's and candy, but you will have to pay for your own food and drinks. Come and join this event by registering here before Sunday 12 December. *About DEAN: The Dutch Engineers Alumni Network of TU Delft, TU/e, Twente, and Wageningen strives to connect alumni (so both Dutch and international) who graduated from one of the technical universities in the Netherlands. DEAN launched its activities in 2014 and currently has communities in Australia, Canada, France, Germany, the Nordics, Spain and Switzerland. ** The event may be cancelled if Covid-19 restrictions change

Half Height Horizontal

Boosting sustainable building education

Boosting sustainable building education in The Netherlands On 17 September, TU Delft launched a new initiative to implement sustainable building practices across the Dutch educational landscape by bringing together educators from Dutch vocational institutions (MBO) and TU Delft lecturers. Last week, the kick-off event at The Green Village on the TU Delft campus brought together 10 educators from MBO institutions and lecturers from TU Delft’s Sustainable Building with Timber MOOC. Educating for impact From September to December 2024, the MBO educators will participate in the MOOC as students: watching videos, completing course exercises, and submitting assignments. Additionally, they will engage in online sessions guided by TU Delft lecturers, who provide subject matter expertise, and an educational expert supporting the online learning process. From December through June 2025, the focus will shift to creating adaptable and open teaching resources specifically developed for MBO institutions. A ripple effect By equipping teachers with the tools and knowledge to teach sustainable building, the initiative supports the transition to more environmentally responsible practices within the building industry. The knowledge shared through this programme will shape the future workforce and contribute to a more sustainable world. While initially targeting a limited number of MBO institutions, the initiative’s impact is expected to extend far beyond. As educators integrate the materials into their curricula, the knowledge will reach future generations of students, amplifying the long-term influence of the project. Sustainable Building with Timber MOOC Course details A two-way learning process This mutually beneficial project embodies lifelong learning. MBO teachers gain access to cutting-edge teaching materials on building with timber, while TU Delft benefits from the practical insights these practitioners bring from the field. This knowledge exchange enhances vocational education and strengthens TU Delft’s research and teaching. Open resources for lasting impact A key goal of the project is to create open-access, customisable teaching materials, enabling educators to tailor content to meet the specific needs of their institutions and students. This flexible approach fosters the teaching of sustainable building techniques. Acknowledgements Heartfelt thanks to everyone involved in making this initiative possible. Together, we are laying the foundations for a more sustainable future.

Three Students Nominated for the ECHO award

Three TU Delft students have been nominated for the ECHO Award 2024. The ECHO award is awarded to students with a non-western background who are actively engaged in society. Sibel, TJ and Pravesha talk about their background their nomination. The finalists will be selected on September 27th. Sibel Gökbekir How has your background influenced your academic journey? As a woman with Turkish roots, my academic journey has been about more than just pursuing degrees in engineering and law; it’s been about consistently advocating for the diverse needs of women and multicultural groups, ensuring their voices are heard in important decisions. This is why I actively contributed to different board positions at TU Delft, working to promote inclusivity and equality. My background inspired me to explore how engineering, law, and social justice intersect, particularly in empowering marginalised communities. I chose to study energy transitions and human rights to contribute to a fairer, more inclusive World. How have you turned this into contributions to society? I’ve dedicated my academic and personal life to promoting diversity and inclusion. As a youth ambassador for Stop Street Harassment, I aimed to create safer spaces for women and minorities because I believe everyone has the right to feel free and safe in society. Through the Turkish Golden Tulip Foundation, I advocated for vulnerable communities in earthquake relief. Additionally, I founded an initiative for migrant students in Rotterdam-South and I have been committed to improving educational opportunities for secondary school students with a migration background. Next, I gave guest lectures across the Netherlands to educate the younger generation about climate change and equitable energy transitions, emphasising the importance of a fair transition for all communities. What does it mean for you to nominated to the ECHO award? I feel very honoured to have been nominated on behalf of TU Delft. My commitment to community engagement is part of who I am, and therefore the ECHO Award is more than just a recognition; It offers me an opportunity to further expand my contributions to a more inclusive society. As an ECHO Ambassador, I plan to expand my efforts in promoting equality and sustainability, while inspiring others to take action for a more equitable World. TJ Rivera How has your background influenced your academic journey? My background as a Filipino in a Dutch-speaking bachelor’s programme made my academic journey both challenging and enriching. Being gay in a male-dominated field like Architecture, where most role models were heteronormative men, added another layer of difficulty. It was intimidating to not see people like me represented. However, this experience fuelled my belief that systems can and should be challenged, changed, and updated. I aimed to bring a fresh perspective, advocating for greater diversity and inclusivity in the field. How have you turned this into contributions to society? I translated my personal challenges into tangible contributions by advocating for inclusivity within architecture. Together with like-minded individuals, I began exploring the intersection of identity, sexuality, and architecture, and collaborated with my faculty’s diversity team to raise awareness. As I became known for my work with the queer community, I saw an opportunity to create lasting change. I co-revived ARGUS, the once-inactive study association for the Master of Architecture, which now serves as a platform to discuss and address issues of diversity within the field. This initiative continues to foster a more inclusive academic environment. What does it mean for you to be nominated to the Echo award? Being nominated for the ECHO Award is a significant milestone in my journey to expand my mission beyond the confines of my faculty. This national platform provides the opportunity to raise awareness and advocate for social justice on a larger scale. I believe students are key to driving change, and my focus is on amplifying the voices of the queer community, which is often overlooked. The ECHO Award will enable me to form partnerships with organizations and universities, further promoting diversity, inclusivity, and equality. It’s a chance to create broader, tangible change, addressing the needs of those who often go unheard. Pravesha Ramsundersingh How has your background influenced your academic journey? As a woman in STEM (Science, Technology, Engineering, and Mathematics), my background has been a powerful motivator to challenge gender disparities within Computer Science. Experiencing firsthand the underrepresentation of women in this field, I have been driven to not only excel academically but also become an advocate for diversity. Through leadership roles in the Faculty and Central Student Councils, I’ve focused on creating an inclusive environment that supports women and minority students, ensuring that everyone has the opportunity to succeed. How have you turned this into contributions to society? I’ve translated my experiences into actionable contributions by actively advocating for DEI at TU Delft. I ensured sexual education and consent training for 3,000 freshmen students, and I led initiatives like the Social Safety Initiatives Conference alongside the Dutch National Coordinator against Racism and Discrimination. In my student governance roles, I pushed for policies that address gender discrimination and social safety concerns, creating a more supportive environment for students of all backgrounds to thrive in both academic and social spaces. What does it mean for you to nominated to the ECHO award? Being nominated for the ECHO Award is an incredible honour that highlights the importance of the work I have done to promote DEI. It inspires me to continue advocating for systemic change in the tech industry and academia. This nomination reaffirms my commitment to driving equity in STEM, ensuring that future generations have more inclusive opportunities. It also motivates me to keep pushing boundaries and empower others to take action for a more just and equal society. The ECHO Award Every year ECHO, Center for Diversity Policy, invites colleges and universities to nominate socially active students who make a difference in the field of Diversity & Inclusion for the ECHO Award 2024. The ECHO Award calls attention to the specific experiences that students with a non-Western background* carry with them and the way they manage to turn these experiences into a constructive contribution to society. Winners are selected by an independent jury and may attend a full-service Summercourse at UCLA in the United States in 2025. Read more: ECHO Award - ECHO (echo-net.nl)

NWO grants funding for innovative research on physical experimental environments

How to move from experiment to mainstream? A consortium led by professor Tamara Metze, has been awarded a prestigious grant from the Netherlands Organisation for Scientific Research (NWO). In search for pathways toward more sustainable futures, Metze and her team will explore how various innovations in field labs such as The Green Village, in urban living labs such as Engy Lab South-East in Amsterdam, and in all sorts of citizens’ initiatives, can be mainstreamed and make more impact on sustainability transitions. Pilot paradox The project ‘From EXperiment to sustainable change: TRAnsformative methodologies for Innovation and learning’ (EXTRA) seeks to overcome a persistent “pilot paradox”. In this paradox, much experimentation takes place but long-term systemic impact remains difficult. Researchers together with all sorts of change makers will synthesise existing knowledge on how to mainstream, upscale, spread, broaden and deepen developed innovations. Tamara Metze: ‘I am excited to unravel what are effective ways of cocreation that lead to mainstreaming the positive changes made in experimental environments. We will figure out how learning and innovation can lead to lasting changes in regulations, policies, and financial systems and the biophysical environment.’ Tamara Metze Read the NWO press release Actionable tools The project is crucial for accelerating sustainability transitions. By refining methodologies for mission-driven experimentation and develop hands on tools for all sorts of change-makers, it will be easier to mainstream the sustainable lessons and innovations. ‘These tools will not only aid grassroots innovators but also influence institutional and organisational structures, ensuring that lessons learned from experiments are better anchored in policies, regulations, and organisations’, explains Metze. The project will employ a transdisciplinary action research approach, bringing together knowledge from various disciplines and policy domains. By co-creating solutions with public and private partners, the research will have an immediate impact. In the long term, the project aims to build a more efficient innovation ecosystem, contributing to more impactful and sustainable outcomes for both society and the environment. Projectpartners TU Delft, VU Amsterdam, Wageningen University & Research, Hogeschool van Amsterdam, Erasmus Universiteit Rotterdam, Hogeschool Rotterdam, The Green Village, AMS Institute; PBL Planbureau voor de Leefomgeving, WoonFriesland, Dijkstra Draisma, Provincie Noord-Holland, Ministerie van Binnenlandse Zaken, PRICE / Almere, BouwLab, Alliantie Samen Nieuw-West, Innovation Quarter.

Unusual waves grow way beyond known limits

Waves that come from multiple directions are extremer than extreme. These remarkable deep-sea waves can be four times steeper than what was previously imagined, as is shown in research by TU Delft and other universities that was published in Nature today. A long time ago, stories were told of mysterious rogue waves that materialised out of nowhere and could topple even the largest ships. These waves lost their mythical character when the first rogue wave was recorded at the Draupner platform in the North Sea. In 2018, Ton van den Bremer and his colleagues at the Universities of Edinburgh and Oxford managed to recreate the Draupner wave in the lab for the first time ever, and this opportunity to study freak waves closely produced unexpected insights. Multiple waves push up water New research by the research consortium now shows that these remarkable waves do not break when traditional theories hold they should, the secret behind which lies in how they arise. Ton van den Bremer, expert on fluid mechanics at TU Delft and led the study, explains: “When most people think of waves, they think of the rolling waves you’d find on a beach. The type of wave we studied occurs in open water and arises when waves coming from multiple directions come together. When these waves with a high directional spread converge, the water is pushed upwards, forming a partially standing wave. An example of this is known as a crossing wave. How crossing waves arise Under certain conditions at sea, waves from multiple directions occur. This can happen in a place where two seas meet, or where winds suddenly change direction, as in a hurricane. When waves from two directions meet, a cross wave occurs, provided their directions are far enough apart. The study also shows that the further apart the directions are, the higher the resulting cross-wave. Travelling waves break when they reach a certain limit, this is when they reach their maximum steepness. The study shows that waves with a multidirectional spreading can get as much as 80% steeper than this limit before they start breaking, which means they can get almost twice as high as ‘normal waves’ before they start to break. Travelling wave (l) and a wave with high directional spreading (r) Breaking waves that grow Next, the researchers found another highly unusual phenomenon that defies existing theories, a phenomenon that is unprecedented according to Van den Bremer: “Once a conventional wave breaks, it forms a white cap, and there is no way back. But when a wave with a high directional spreading breaks, it can keep growing.” The study shows that these enormous waves can grow to twice their original steepness while breaking, which is already twice bigger than the conventional limit. Together, the waves can grow four times steeper than previously thought possible. Damage to offshore structures The knowledge that multidirectional waves can become as much as four times larger than was deemed possible can help design safer marine structures. "The three-dimensionality of waves is often overlooked in the design of offshore wind turbines and other structures in general; our findings suggest this leads to designs that are less reliable", says Mark McAllister of the University of Oxford, who led the experiments and is now a senior scientist at Wood Thilsted. Innovative vertical sensors made it possible to take accurate 3D measurements of waves. Innovative 3D measurement method A 3D measurement method developed in the FloWave lab paved the way for these new insights. “Conventional 2D wave measurement methods weren’t up to the task”, Van den Bremer explains, which is why the research group designed a new way to create 3D wave measurements. Ross Calvert of the University of Edinburgh: “This is the first time we've been able to measure wave heights at such high spatial resolution over such a big area, giving us a much more detailed understanding of complex wave breaking behaviour." FloWave Ocean Energy Research Facility in Edinburgh. The circular basin has a diameter of 25 metres and can be used to generate waves from multiple directions. Header image by: Fabien Duboc