Filter results

48106 results

AI in port and maritime research in Leiden, Delft and Rotterdam

AI in port and maritime research in Leiden, Delft and Rotterdam From a ship that has been designed to tell you what maintenance it needs and when, to an intelligent journey planner for global goods transport. The three universities in Zuid-Holland are abuzz with AI research in the field of ports and maritime. Three researchers explain. Part two in a series of five about themes into which the three universities conduct AI-related research. ‘The big challenges facing ports are accessibility, sustainability and finding the right employees,’ says Rudy Negenborn, Professor of Multi-Machine Operations & Logistics in Delft. ‘In a busy port, you have to optimise your planning to avoid delays, congestion and unnecessary emissions. This doesn’t just require solutions to technical challenges: a solution can only be implemented if an organisation wants and has the right infrastructure for this.' 'We can develop technology that makes it possible for ships to enter a port safely and autonomously, so an operator only has to intervene in an emergency. But what would this mean for the operator’s stress levels? How many ships can they monitor at any one time? And would the ships interact and exchange information with one another?’ All expertise needed Negenborn has spent about a year and a half intensifying the collaboration with the universities of Leiden and Rotterdam. He can see how the expertise of all three universities is needed when working with many different parties on solutions relating to smart maintenance, smart transportation and smart logistics. ‘In black and white terms, Delft’s main strength is technology, Rotterdam’s is economics and business models, and Leiden’s is social and legal aspects.’ Black and white indeed, because Thomas Bäck from Leiden doesn’t fit this stereotype. He is the head of the Natural Computing research group at the Leiden Institute of Advanced Computer Science (LIACS), which is working on algorithms that apply principles from evolution and nature. A key question in his work is how an algorithm can weigh up different aspects, for instance costs and sustainability, before suggesting the best option. ‘This could mean the best way to design ships, but learning algorithms can also predict the best time for maintenance. This is something that Delft is also researching.’ How we can make a difference Bäck gained massive inspiration from a focus group with about ten participants from the three universities that focused on AI research in the area of ports and maritime. ‘We discussed how we could really make a difference, while taking the UN Sustainable Development Goals into consideration, for instance. We have to think about social aspects: regulation of AI and how it can explain itself better so as to win people’s trust. The economics and logistics perspectives from Rotterdam were also new to me. It was great.’ More collaboration in Zuid-Holland will create opportunities, says Rob Zuidwijk from Erasmus University Rotterdam. As Professor of Global Supply Chains and Ports, he can see chances to improve the efficiency of goods transport and ports. ‘I want to bring together the public, the city, researchers and not-for-profit organisations in society.’ What autonomous shipping means If it were up to Zuidwijk, he would invite all of the above to the campus to simulate the Port of Rotterdam in a digital twin environment. ‘Then they would see what autonomous shipping means and what impact certain behaviours have on the employees and public. This would strengthen the links between public and private stakeholders, both at the port and in the city. The dialogues with, among others, Rudy Negenborn and Mark van Koningsveld from Delft University of Technology are helping enormously to get a clear idea of what needs a digital twin environment must meet to get multidisciplinary research with an impact off the ground.’ Collaboration with business is hugely important if you are to have an impact as a researcher, and this is something all the researchers have plenty of experience of. With the Port of Rotterdam of course, and Bäck also works with companies such as Air France-KLM, Tata Steel and the Honda Research Institute in Germany. Negenborn: ‘If we three universities can scale up, it will be easier to reach the boardroom of big companies, which will mean bigger budgets to work with. This will make us more decisive.’ Below is an example of the work of each of the three professors: AI-related research in ports and maritime. Proactive ship maintenance: algorithm prevents damage and costs Delft University of Technology - Rudy Negenborn ‘You buy a ship for 30 years. In that time things break, at unfortunate moments. Being at anchor can cost tens of thousands of euros per day, and if a part isn’t in stock... Together with Leiden we are working on health monitoring systems in the Autonomous Shipping research lab (RAS). These kinds of system closely follow how a ship responds to the rudder, the engine speed and so on. ‘The algorithm collects and interprets this data. A sudden reduction in response to the rudder can be caused by sticks around the propeller. If the system suggests this diagnosis, a zigzag manoeuvre can solve the problem. The system can automatically decide whether to temporarily reduce speed, for instance, to prevent engine failure. ‘In this project we in Delft are working on ship dynamics: how to design a ship. Leiden is dealing with the data-science side: how and which data can lead to a diagnosis and advice from the system. A user-friendly dashboard is also coming from Leiden. We’re working on the algorithms together.’ An intelligent journey planner for goods transport Erasmus University Rotterdam - Rob Zuidwijk ‘Fresh cargo shouldn’t be kept waiting because the cooling system is running. If lorries drive in convoy, they can save as much as 10 percent on fuel. If they coordinate their trips, they can save even more. Inland shipping could be much more economical, but the best use isn’t always made of it. It requires more logistical coordination than freight transport by truck. What we need is a journey planner for European goods transport. ‘Where the 9292 [a journey planner for public transport] brings together all the individual timetables, our system has to be smart. It has to harmonise an enormous amount of data, recognise patterns and then suggest and organise the cheapest, cleanest and fastest route. If something goes wrong, like the recent Suez Canal blockage, the system has to respond. ‘With econometrics and computer science professor Rommert Dekker and professor of goods transport and logistics Lorant Tavasszy from Delft, I’m now thinking about such systems. We’re in talks with parties from the Port of Rotterdam. If the port provides data that show what is happening in the port and in the European hinterland, we can get an algorithm to learn from this. In future all the parties in the future will be able to organise the optimal transport on a virtual map and determine whether the contents of container X will arrive fresh.’ Algorithm shows: the best design and clean your ship in time Leiden University - Roy de Winter, PhD candidate supervised by Thomas Bäck ‘I’m researching efficient optimisation algorithms at C-Job Naval Architects and Leiden University. An important question is how algorithms can weigh up the lowest production and usage costs against the best quality and result. If, for instance, you make a ship long and slim, it will be more efficient, but you need more steel to build it than to build a shorter, wider one. And more sustainable materials and cleaner fuels are becoming increasingly important in the ship design process. ‘We are also analysing operational data from ships. We recently made a unique discovery. A client wanted to see the influence of the wind on the horsepower required and provided datasets for us to find out. We checked the data from two identical ships and saw that one was over 30 percent more economical than the other. The first one had just been cleaned, whereas the second one had a significant coating of algae and barnacles. That proved to be a significant cause of the difference. Cleaning can be a whole operation, but it’s definitely worthwhile! Nowadays there are methods to do this cleaning in water, with a kind of robot lawn mower, for example.’ Five themes packed with AI research in Zuid-Holland This article is part two in a series in which we show how teaching and research using or into AI plays a role at Erasmus University Rotterdam, Leiden University and Delft University of Technology. The articles will cover the five themes that the universities are working on, together and alone: Peace, justice and security Port and maritime Energy and sustainability Life sciences and health Smart industry Text: Rianne Lindhout

Half Height Horizontal

Students Amos Yusuf, Mick Dam & Bas Brouwer winners of Mekel Prize 2024

Master students Amos Yusuf, from the ME faculty (Mick Dam, from the EEMCS faculty and graduate Bas Brouwer have won the Mekel Prize 2024 for the best extra scientific activity at TU Delft: the development of an initiative that brings master students into the classroom teaching sciences to the younger generations. The prize was ceremonially awarded by prof Tim van den Hagen on 13 November after the Van Hasselt Lecture at the Prinsenhof, Delft. They received a statue of Professor Jan Mekel and 1.500,- to spend on their project. Insights into climate change are being openly doubted. Funding for important educational efforts and research are being withdrawn. Short clips – so called “reels” – on Youtube and TikTok threaten to simplify complex political and social problems. AI fakes befuddle what is true and what is not. The voices of science that contribute to those discussion with modesty, careful argument and scepticism, are drowned in noise. This poses a threat for universities like TU Delft, who strive to increase student numbers, who benefit from diverse student populations and aim to pass on their knowledge and scientific virtues to the next generation. It is, therefore, alarming that student enrolments to Bachelor and Master Programs at TU Delft have declined in the past year. Students in front of the class The project is aimed to make the sciences more appealing to the next generation. They have identified the problem that students tend miss out on the opportunity of entering a higher education trajectory in the Beta sciences – because they have a wrong picture of such education. In their mind, they depict it as boring and dry. In his pilot lecture at the Stanislas VMBO in Delft, Amos Yusuf has successfully challenged this image. He shared his enthusiasm for the field of robotics and presented himself as a positive role model to the pupils. And in return the excitement of the high school students is palpable in the videos and pictures from the day. The spark of science fills their eyes. Bas Brouwer Mick Dam are the founders of NUVO – the platform that facilitates the engagement of Master Students in high school education in Delft Their efforts offer TU Delft Master Students a valuable learning moment: By sharing insights from their fields with pupils at high school in an educational setting, our students can find identify their own misunderstandings of their subject, learn to speak in front of non-scientific audiences and peak into education as a work field they themselves might not have considered. An extraordinary commitment According to the Mekel jury, the project scored well on all the criteria (risk mitigation, inclusiveness, transparency and societal relevance). However, it was the extraordinary commitment of Amos who was fully immersed during his Master Project and the efforts of Brouwer and Dam that brought together teaching and research which is integral to academic culture that made the project stand out. About the Mekel Prize The Mekel Prize will be awarded to the most socially responsible research project or extra-scientific activity (e.g. founding of an NGO or organization, an initiative or realization of an event or other impactful project) by an employee or group of employees of TU Delft – projects that showcase in an outstanding fashion that they have been committed from the beginning to relevant moral and societal values and have been aware of and tried to mitigate as much as possible in innovative ways the risks involved in their research. The award recognizes such efforts and wants to encourage the responsible development of science and technology at TU Delft in the future. For furthermore information About the project: https://www.de-nuvo.nl/video-robotica-pilot/ About the Mekel Prize: https://www.tudelft.nl/en/tpm/our-faculty/departments/values-technology-and-innovation/sections/ethics-philosophy-of-technology/mekel-prize

New catheter technology promises safer and more efficient treatment of blood vessels

Each year, more than 200 million catheters are used worldwide to treat vascular diseases, including heart disease and artery stenosis. When navigating into blood vessels, friction between the catheter and the vessel wall can cause major complications. With a new innovative catheter technology, Mostafa Atalla and colleagues can change the friction from having grip to completely slippery with the flick of a switch. Their design improves the safety and efficiency of endovascular procedures. The findings have been published in IEEE. Catheter with variable friction The prototype of the new catheter features advanced friction control modules to precisely control the friction between the catheter and the vessel wall. The friction is modulated via ultrasonic vibrations, which overpressure the thin fluid layer. This innovative variable friction technology makes it possible to switch between low friction for smooth navigation through the vessel and high friction for optimal stability during the procedure. In a proof-of-concept, Atalla and his team show that the prototype significantly reduces friction, averaging 60% on rigid surfaces and 11% on soft surfaces. Experiments on animal aortic tissue confirm the promising results of this technology and its potential for medical applications. Fully assembled catheters The researchers tested the prototype during friction experiments on different tissue types. They are also investigating how the technology can be applied to other procedures, such as bowel interventions. More information Publicatie DOI : 10.1109/TMRB.2024.3464672 Toward Variable-Friction Catheters Using Ultrasonic Lubrication | IEEE Journals & Magazine | IEEE Xplore Mostafa Atalla: m.a.a.atalla@tudelft.nl Aimee Sakes: a.sakes@tudelft.nl Michaël Wiertlewski: m.wiertlewski@tudelft.nl Would you like to know more and/or attend a demonstration of the prototype please contact me: Fien Bosman, press officer Health TU Delft: f.j.bosman@tudelft.nl/ 0624953733

A key solution to grid congestion

On behalf of the TU Delft PowerWeb Institute, researchers Kenneth Brunninx and Simon Tindemans are handing over a Position Paper to the Dutch Parliament on 14 November 2024, with a possible solution to the major grid capacity problems that are increasingly cropping up in the Netherlands. The Netherlands is unlikely to meet the 2030 climate targets, and one of the reasons for this is that large industry cannot switch to electricity fast enough, partly because of increasingly frequent problems around grid capacity and grid congestion. In all likelihood, those problems will actually increase this decade before they can decrease, the researchers argue. The solution offered by the TU Delft PowerWeb Institute researchers is the ‘flexible backstop’. With a flexible backstop, the current capacity of the power grid can be used more efficiently without sacrificing safety or reliability. A flexible backstop is a safety mechanism that automatically and quickly reduces the amount of electricity that an electric unit can draw from the grid (an electric charging station or a heat pump) or deliver (a PV installation). It is a small device connected or built into an electrical unit, such as a charging station or heat pump, that ‘communicates’ with the distribution network operator. In case of extreme stress on the network, the network operator sends a signal to the device to limit the amount of power. Germany recently introduced a similar system with electric charging stations. The backstop would be activated only in periods of acute congestion problems and could help prevent the last resort measure, which is cutting off electricity to users. ‘Upgrading the electricity network remains essential, but in practice it will take years. So there is a need for short-term solutions that can be integrated into long-term planning. We, the members of the TU Delft PowerWeb Institute, call on the government, network operators and regulator to explore the flexible backstop as an additional grid security measure,’ they said. The entire Paper can be read here . Kenneth Brunninx Associate Professor at the Faculty of Engineering, Governance and Management, where he uses quantitative models to evaluate energy policy and market design with the aim of reducing CO2 emissions. Simon Tindemans is Associate Professor in the Intelligent Electrical Power Grids group at Faculty of Electrical Engineering, Mathematics and Computer Science. His research interests include uncertainty and risk management for power grids. TU Delft PowerWeb Institute is a community of researchers who are investigating how to make renewable energy systems reliable, future proof and accessible to everyone.

25 year celebration of formal collaboration between Delft University of Technology and the University of Campinas

On 25 October 2024 we celebrated 25 years of formal collaboration between Delft University of Technology and the University of Campinas. What began as a project to exchange some students in chemical engineering has now grown to a multifaceted and broad academic collaboration which accumulated into 24 joint research projects (>20 M Euro); 16 advanced courses and 15 Doctors with a Dual Degree PhD. Patricia Osseweijer, TU Delft Ambassador Brazil explained, “We are proud to show and reflect on this special day the added value we created resulting from our joint activities. The lessons we learned demonstrate that especially continuity of funds and availability for exchanges has contributed to joint motivation and building trust which created strong relations. This is the foundation for academic creativity and high-level achievements.” The program presented showcases of Dual Degree projects; research activities and education. It discussed the future objectives and new fields of attention and agree on the next steps to maintain and strengthen the foundation of strong relations. Telma Franco, Professor UNICAMP shared that “joint education and research has substantially benefitted the students, we see that back in the jobs they landed in,” while UNICAMP’s Professor Gustavo Paim Valenca confirmed that “we are keen to extend our collaboration to more engineering disciplines to contribute jointly to global challenges” Luuk van der Wielen highlighted that “UNICAMP and TU Delft provide valuable complementary expertise as well as infrastructures to accelerate research and innovation. Especially our joint efforts in public private partnerships brings great assets” To ensure our future activities both University Boards have launched a unique joint program for international academic leadership. This unique 7-month program will accommodate 12 young professors, 6 from each university. The programme began on 4 November 2024 in Delft, The Netherlands.