Filter results

47639 results

Towards a sensible digital society

Mathematics, electrical engineering and computer science are the foundation of modern technology: they form the basis for solutions to this century's major challenges. This creates not only opportunities but also responsibilities. "As engineers, we must be aware of the fact that the digital society does not exclusively bring benefits", warns Professor John Schmitz, Dean of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS). Mathematics, (micro)electronics and computer science: all technical systems and hardware – from medical equipment to aircraft – require a combination of these three elements. "Take your smartphone", Professor Schmitz explains. "It contains electronic switches – integrated circuits. Designing them requires mathematics. Consider Kirchhoff's laws, which state that the sum of the voltages at a node in such a circuit equals zero; the same applies to the resistance in a loop. Solving such equations for simple circuits is manageable, but one modern integrated circuit (or microchip) contains millions of these loops. To do that, you really need to know your mathematics". Smartphones now have 100,000 times the computing power of the computers that were used for the moon landing. This was made possible by the development of micro-electronics, which in turn influenced the development of mathematics and computer science. "In the past, mathematics required a great deal of analytical solving. Current computing power and numerical methods mean we can simply calculate it all. This offers unprecedented possibilities," notes Schmitz. "In addition, all sorts of things that used to require experimental demonstration can now be partly calculated; so we don't have to conduct as many expensive experiments". Mathematics, computer science and electronics reinforce each other in this way, and are the joint foundation of modern technology – a role that Schmitz wants to put in the spotlight. Healthcare One topic that does not immediately bring EEMCS to mind is healthcare. The use of stem cells to grow tissue on electronic chips (‘Organ on Chip’) now makes it possible to conduct highly specific studies of how medicines work, in order to develop personalised individual medication. In the Bio-Informatics and Pattern Recognition research group, researchers are applying advanced data analysis in order to be able to interpret and use the ever-expanding volume of biological data (e.g. from DNA sequencing). Great things are happening in the field of medical imaging as well. "Take MRI scanners, which cost millions because of the linear magnets they require. Although these magnets have been fully optimised over time, the best possible technology is not being used to process the signals into images", explains Schmitz. "A combination of simple magnets and sophisticated image processing can produce very good image quality. This makes the devices affordable for developing countries as well". Great things are happening in the field of medical imaging as well. "Take MRI scanners, which cost millions because of the linear magnets they require. Although these magnets have been fully optimised over time, the best possible technology is not being used to process the signals into images", explains Schmitz. "A combination of simple magnets and sophisticated image processing can produce very good image quality. This makes the devices affordable for developing countries as well". However, even more information can be extracted from the more expensive scanners. "That kind of system generates a mountain of data, only a small portion of which is used in constructing two-dimensional images. By using symbols – glyphs – to represent this sea of data, computer-graphics techniques can be used to generate visual insight into all kinds of processes taking place in the tissue. The current systems can't do that. Of course, serious mathematics lies behind all this", says Schmitz. "It’s about how we visualise information in a way that humans can understand. Computer graphics could also be helpful in the cockpit, where pilots see so much data flash by that they can hardly make anything of it". Energy transition The energy transition has been called the greatest challenge of this century. According to Schmitz, this is no empty claim: "Worldwide, the majority of our energy still comes from fossil fuels. That has soon to change to 100% green energy, and electric energy will play an important role in the process". The generation of sustainable energy, the storage and conversion of energy, smart energy networks: the researchers at EEMCS are working on all the areas that will make this possible. The transition from centralised to decentralised generation and distribution will play a major role here: "Energy is increasingly becoming a two-way street. For example, locally generated energy can be delivered to the net or perhaps stored temporarily in car batteries. The network will also have to be able to cope with fluctuating supplies of solar and wind energy. We will soon be able to test exactly how that works in our new system-integration lab". Schmitz is referring to the Electrical Sustainable Power Lab (ESP Lab), a unique facility for research on the integration of all these new technologies into a single sustainable energy system. Blockchain While traditional customers are increasingly becoming ‘prosumers’ of energy, so the number of transactions is also increasing. Soon there will be questions to be answered, such as how do you charge for energy you have supplied to a neighbour. Blockchain technology – a new form of safe, distributed data storage – could be useful in this context. "Blockchain aims to generate digital confidence. That is quite an achievement in an age when our confidence in institutions is so often being undermined", argues Schmitz. How does it work? "Blockchain encrypts documents or data, and then it generates a unique code: a hash. This is done in such a way that the hash changes if something in the document changes. This means that any fraud is immediately revealed". Confidence in blockchain also has to do with the fact that the storage of each document is spread across the internet, thereby making fraud or theft virtually impossible. "Blockchain can be used for a large number of applications that currently require intermediaries, for example registering wills or taking out mortgages. It can also provide access to the financial world in areas where there are no banks", Schmitz points out. "It will soon be possible to use blockchain to arrange anything that now requires proof of identity". EEMCS is at the forefront of the development of blockchain technology. TU Delft is a founding member of the Dutch Blockchain Coalition, which is based on the campus. "All partners from society and industry are represented there: banks, government bodies, industry, notaries, insurance companies, knowledge institutions. It’s easier to interact with the field when it's so near". Education This community underpins the faculty’s aims in regard to its teaching duties. "We want to solve societal problems. This requires research, as well as engineers who are able to put that into practice. We train them, because engineers are needed in order to solve the world’s problems’, declares Schmitz. In his assessment, the teaching at TU Delft is in good shape. In a recent benchmark study by the Massachusetts Institute of Technology (MIT), TU Delft is ranked high amongst the world’s best universities of technology. "I would venture to say that the educational innovation at EEMCS is one reason that we are one of the top five in the world. The MIT report makes explicit mention of our Solar Energy MOOC and the 'blended-learning' approach in the teaching of maths." The latter project is PRIME: Project Innovation Mathematics Education. "We teach mathematics across the entire university, so we have to be able to explain it well to non-mathematics students". A combination of videos, interactive quizzes and online homework is intended to provide students with comprehensible preparation for the lectures and to improve their mathematical foundations. "We will also soon be starting a 'digital-skills' project, in which all students will learn the basic elements of programming", notes Schmitz. In addition to imparting mathematics and digital skills, the project will also make sure students – and scientists – consider the potential risks of the digital society. Risks "Digitisation has a major influence on society. When you go to a restaurant, everyone is sitting there looking at their screens. Although we could debate about whether that is good or bad, it does have a major impact on daily life", argues Schmitz. "On the other hand, some people today still do not have any connection to the internet. Do they no longer count? The government already makes it nearly impossible to do a tax return on paper". Social exclusion is only one of the risks. Schmitz explains, "We can have computers train themselves to recognise images. For example, the neural network recognises whiskers and decides that it’s seeing a cat. In time, it trains itself by adjusting a variety of weighting factors in the neural network. Although there have been no problems so far, these systems are sometimes so complicated that we no longer understand what they are doing". This could lead to potentially major dangers if, for example, we use the same systems to drive our cars, manage the stock market or arrive at medical diagnoses. We need to find ways to make deep learning and similar technologies more comprehensible. Otherwise, we could be heading for ‘Weapons of Math Destruction’, as the mathematician Cathy O’Neil describes in her book of the same name. In general, this is nothing new. "There are two sides to whatever we invent, good or bad", argues Schmitz. "As an engineer, it's important to make this visible, and therefore transparent". Digital society Until recently, this was uncharted territory. "These problems are on their way because the digital society is unstoppable. In fact, they are already here, although they are a relatively new issue. We need to be aware that these kinds of factors will be playing a role. This starts with the training of good engineers, and this means in education", observes Schmitz. Fortunately, we are not alone in this endeavour. For example, the ‘Digital Society’ programme of the Association of Universities in the Netherlands (VSNU) addresses both the opportunities and the risks. "The universities are united in saying, 'We are facing a common task'. Where is the human factor in the digital society? To what extent can we trust digital contacts and transactions? Even if we do not yet have the answers, I have high expectations that we will be able to find them if we all work together. This is how we can progress together towards a responsible digital society". More information You can view the inaugural speech of Prof. John Schmitz on demand via ths link . You can find the slides of the inaugural speech here . Text: Agaath Diemel l June 2018

Half Height Horizontal

Boosting sustainable building education

Boosting sustainable building education in The Netherlands On 17 September, TU Delft launched a new initiative to implement sustainable building practices across the Dutch educational landscape by bringing together educators from Dutch vocational institutions (MBO) and TU Delft lecturers. Last week, the kick-off event at The Green Village on the TU Delft campus brought together 10 educators from MBO institutions and lecturers from TU Delft’s Sustainable Building with Timber MOOC. Educating for impact From September to December 2024, the MBO educators will participate in the MOOC as students: watching videos, completing course exercises, and submitting assignments. Additionally, they will engage in online sessions guided by TU Delft lecturers, who provide subject matter expertise, and an educational expert supporting the online learning process. From December through June 2025, the focus will shift to creating adaptable and open teaching resources specifically developed for MBO institutions. A ripple effect By equipping teachers with the tools and knowledge to teach sustainable building, the initiative supports the transition to more environmentally responsible practices within the building industry. The knowledge shared through this programme will shape the future workforce and contribute to a more sustainable world. While initially targeting a limited number of MBO institutions, the initiative’s impact is expected to extend far beyond. As educators integrate the materials into their curricula, the knowledge will reach future generations of students, amplifying the long-term influence of the project. Sustainable Building with Timber MOOC Course details A two-way learning process This mutually beneficial project embodies lifelong learning. MBO teachers gain access to innovative teaching materials on building with timber, while TU Delft benefits from the practical insights these practitioners bring from the field. This knowledge exchange enhances vocational education and strengthens TU Delft’s research and teaching. Open resources for lasting impact A key goal of the project is to create open-access, customisable teaching materials, enabling educators to tailor content to meet the specific needs of their institutions and students. This flexible approach fosters the teaching of sustainable building techniques. Acknowledgements Heartfelt thanks to everyone involved in making this initiative possible. Together, we are laying the foundations for a more sustainable future.

Three Students Nominated for the ECHO award

Three TU Delft students have been nominated for the ECHO Award 2024. The ECHO award is awarded to students with a non-western background who are actively engaged in society. Sibel, TJ and Pravesha talk about their background their nomination. The finalists will be selected on September 27th. Sibel Gökbekir How has your background influenced your academic journey? As a woman with Turkish roots, my academic journey has been about more than just pursuing degrees in engineering and law; it’s been about consistently advocating for the diverse needs of women and multicultural groups, ensuring their voices are heard in important decisions. This is why I actively contributed to different board positions at TU Delft, working to promote inclusivity and equality. My background inspired me to explore how engineering, law, and social justice intersect, particularly in empowering marginalised communities. I chose to study energy transitions and human rights to contribute to a fairer, more inclusive World. How have you turned this into contributions to society? I’ve dedicated my academic and personal life to promoting diversity and inclusion. As a youth ambassador for Stop Street Harassment, I aimed to create safer spaces for women and minorities because I believe everyone has the right to feel free and safe in society. Through the Turkish Golden Tulip Foundation, I advocated for vulnerable communities in earthquake relief. Additionally, I founded an initiative for migrant students in Rotterdam-South and I have been committed to improving educational opportunities for secondary school students with a migration background. Next, I gave guest lectures across the Netherlands to educate the younger generation about climate change and equitable energy transitions, emphasising the importance of a fair transition for all communities. What does it mean for you to nominated to the ECHO award? I feel very honoured to have been nominated on behalf of TU Delft. My commitment to community engagement is part of who I am, and therefore the ECHO Award is more than just a recognition; It offers me an opportunity to further expand my contributions to a more inclusive society. As an ECHO Ambassador, I plan to expand my efforts in promoting equality and sustainability, while inspiring others to take action for a more equitable World. TJ Rivera How has your background influenced your academic journey? My background as a Filipino in a Dutch-speaking bachelor’s programme made my academic journey both challenging and enriching. Being gay in a male-dominated field like Architecture, where most role models were heteronormative men, added another layer of difficulty. It was intimidating to not see people like me represented. However, this experience fuelled my belief that systems can and should be challenged, changed, and updated. I aimed to bring a fresh perspective, advocating for greater diversity and inclusivity in the field. How have you turned this into contributions to society? I translated my personal challenges into tangible contributions by advocating for inclusivity within architecture. Together with like-minded individuals, I began exploring the intersection of identity, sexuality, and architecture, and collaborated with my faculty’s diversity team to raise awareness. As I became known for my work with the queer community, I saw an opportunity to create lasting change. I co-revived ARGUS, the once-inactive study association for the Master of Architecture, which now serves as a platform to discuss and address issues of diversity within the field. This initiative continues to foster a more inclusive academic environment. What does it mean for you to be nominated to the Echo award? Being nominated for the ECHO Award is a significant milestone in my journey to expand my mission beyond the confines of my faculty. This national platform provides the opportunity to raise awareness and advocate for social justice on a larger scale. I believe students are key to driving change, and my focus is on amplifying the voices of the queer community, which is often overlooked. The ECHO Award will enable me to form partnerships with organizations and universities, further promoting diversity, inclusivity, and equality. It’s a chance to create broader, tangible change, addressing the needs of those who often go unheard. Pravesha Ramsundersingh How has your background influenced your academic journey? As a woman in STEM (Science, Technology, Engineering, and Mathematics), my background has been a powerful motivator to challenge gender disparities within Computer Science. Experiencing firsthand the underrepresentation of women in this field, I have been driven to not only excel academically but also become an advocate for diversity. Through leadership roles in the Faculty and Central Student Councils, I’ve focused on creating an inclusive environment that supports women and minority students, ensuring that everyone has the opportunity to succeed. How have you turned this into contributions to society? I’ve translated my experiences into actionable contributions by actively advocating for DEI at TU Delft. I ensured sexual education and consent training for 3,000 freshmen students, and I led initiatives like the Social Safety Initiatives Conference alongside the Dutch National Coordinator against Racism and Discrimination. In my student governance roles, I pushed for policies that address gender discrimination and social safety concerns, creating a more supportive environment for students of all backgrounds to thrive in both academic and social spaces. What does it mean for you to nominated to the ECHO award? Being nominated for the ECHO Award is an incredible honour that highlights the importance of the work I have done to promote DEI. It inspires me to continue advocating for systemic change in the tech industry and academia. This nomination reaffirms my commitment to driving equity in STEM, ensuring that future generations have more inclusive opportunities. It also motivates me to keep pushing boundaries and empower others to take action for a more just and equal society. The ECHO Award Every year ECHO, Center for Diversity Policy, invites colleges and universities to nominate socially active students who make a difference in the field of Diversity & Inclusion for the ECHO Award 2024. The ECHO Award calls attention to the specific experiences that students with a non-Western background* carry with them and the way they manage to turn these experiences into a constructive contribution to society. Winners are selected by an independent jury and may attend a full-service Summercourse at UCLA in the United States in 2025. Read more: ECHO Award - ECHO (echo-net.nl)

NWO grants funding for innovative research on physical experimental environments

How to move from experiment to mainstream? A consortium led by professor Tamara Metze, has been awarded a prestigious grant from the Netherlands Organisation for Scientific Research (NWO). In search for pathways toward more sustainable futures, Metze and her team will explore how various innovations in field labs such as The Green Village, in urban living labs such as Engy Lab South-East in Amsterdam, and in all sorts of citizens’ initiatives, can be mainstreamed and make more impact on sustainability transitions. Pilot paradox The project ‘From EXperiment to sustainable change: TRAnsformative methodologies for Innovation and learning’ (EXTRA) seeks to overcome a persistent “pilot paradox”. In this paradox, much experimentation takes place but long-term systemic impact remains difficult. Researchers together with all sorts of change makers will synthesise existing knowledge on how to mainstream, upscale, spread, broaden and deepen developed innovations. Tamara Metze: ‘I am excited to unravel what are effective ways of cocreation that lead to mainstreaming the positive changes made in experimental environments. We will figure out how learning and innovation can lead to lasting changes in regulations, policies, and financial systems and the biophysical environment.’ Tamara Metze Read the NWO press release Actionable tools The project is crucial for accelerating sustainability transitions. By refining methodologies for mission-driven experimentation and develop hands on tools for all sorts of change-makers, it will be easier to mainstream the sustainable lessons and innovations. ‘These tools will not only aid grassroots innovators but also influence institutional and organisational structures, ensuring that lessons learned from experiments are better anchored in policies, regulations, and organisations’, explains Metze. The project will employ a transdisciplinary action research approach, bringing together knowledge from various disciplines and policy domains. By co-creating solutions with public and private partners, the research will have an immediate impact. In the long term, the project aims to build a more efficient innovation ecosystem, contributing to more impactful and sustainable outcomes for both society and the environment. Projectpartners TU Delft, VU Amsterdam, Wageningen University & Research, Hogeschool van Amsterdam, Erasmus Universiteit Rotterdam, Hogeschool Rotterdam, The Green Village, AMS Institute; PBL Planbureau voor de Leefomgeving, WoonFriesland, Dijkstra Draisma, Provincie Noord-Holland, Ministerie van Binnenlandse Zaken, PRICE / Almere, BouwLab, Alliantie Samen Nieuw-West, Innovation Quarter.

Unusual waves grow way beyond known limits

Waves that come from multiple directions are extremer than extreme. These remarkable deep-sea waves can be four times steeper than what was previously imagined, as is shown in research by TU Delft and other universities that was published in Nature today. A long time ago, stories were told of mysterious rogue waves that materialised out of nowhere and could topple even the largest ships. These waves lost their mythical character when the first rogue wave was recorded at the Draupner platform in the North Sea. In 2018, Ton van den Bremer and his colleagues at the Universities of Edinburgh and Oxford managed to recreate the Draupner wave in the lab for the first time ever, and this opportunity to study freak waves closely produced unexpected insights. Multiple waves push up water New research by the research consortium now shows that these remarkable waves do not break when traditional theories hold they should, the secret behind which lies in how they arise. Ton van den Bremer, expert on fluid mechanics at TU Delft and led the study, explains: “When most people think of waves, they think of the rolling waves you’d find on a beach. The type of wave we studied occurs in open water and arises when waves coming from multiple directions come together. When these waves with a high directional spread converge, the water is pushed upwards, forming a partially standing wave. An example of this is known as a crossing wave. How crossing waves arise Under certain conditions at sea, waves from multiple directions occur. This can happen in a place where two seas meet, or where winds suddenly change direction, as in a hurricane. When waves from two directions meet, a cross wave occurs, provided their directions are far enough apart. The study also shows that the further apart the directions are, the higher the resulting cross-wave. Travelling waves break when they reach a certain limit, this is when they reach their maximum steepness. The study shows that waves with a multidirectional spreading can get as much as 80% steeper than this limit before they start breaking, which means they can get almost twice as high as ‘normal waves’ before they start to break. Travelling wave (l) and a wave with high directional spreading (r) Breaking waves that grow Next, the researchers found another highly unusual phenomenon that defies existing theories, a phenomenon that is unprecedented according to Van den Bremer: “Once a conventional wave breaks, it forms a white cap, and there is no way back. But when a wave with a high directional spreading breaks, it can keep growing.” The study shows that these enormous waves can grow to twice their original steepness while breaking, which is already twice bigger than the conventional limit. Together, the waves can grow four times steeper than previously thought possible. Damage to offshore structures The knowledge that multidirectional waves can become as much as four times larger than was deemed possible can help design safer marine structures. "The three-dimensionality of waves is often overlooked in the design of offshore wind turbines and other structures in general; our findings suggest this leads to designs that are less reliable", says Mark McAllister of the University of Oxford, who led the experiments and is now a senior scientist at Wood Thilsted. Innovative vertical sensors made it possible to take accurate 3D measurements of waves. Innovative 3D measurement method A 3D measurement method developed in the FloWave lab paved the way for these new insights. “Conventional 2D wave measurement methods weren’t up to the task”, Van den Bremer explains, which is why the research group designed a new way to create 3D wave measurements. Ross Calvert of the University of Edinburgh: “This is the first time we've been able to measure wave heights at such high spatial resolution over such a big area, giving us a much more detailed understanding of complex wave breaking behaviour." FloWave Ocean Energy Research Facility in Edinburgh. The circular basin has a diameter of 25 metres and can be used to generate waves from multiple directions. Header image by: Fabien Duboc