Filter results

47632 results

The Academic Fringe Festival - Aaron Halfaker: Designing to Learn - Aligning Design Thinking and Data Science to Build Intelligent Tools That Evolve

The Academic Fringe Festival - Aaron Halfaker: Designing to Learn - Aligning Design Thinking and Data Science to Build Intelligent Tools That Evolve 04 April 2022 17:00 till 18:00 - Location: Online by Aaron Halfaker | Microsoft Research Abstract “Design to learn" is a collaborative approach to developing intelligent systems that leverage the complementary capabilities of designers and data scientists. Data scientists develop algorithms that work despite the noisy, messy realities of human behavior patterns, and designers develop techniques that reduce noise by aligning interactions closely with how users think about their work. In this talk, I'll describe a set of shared concepts and processes that are intended to help designers and data scientists communicate effectively throughout the development process. This approach is being applied and refined within various product contexts in Microsoft including email triage, meeting recap, time management, and Q&A routing. Speaker Biography Aaron Halfaker is a principal applied research scientist working in the Office of Applied Research in Microsoft’s Experiences and Devices organization. He is also a Senior Scientist at the University of Minnesota. Dr. Halfaker’s research explores the intersection of productive information work and the application of advanced technologies (AI) to support productivity. In his systems building research, he’s worn many hats from full stack engineer, ethnographer, engineering manager, UX designer, community manager, and research scientist. He’s most notable for building an open infrastructure for machine learning in Wikipedia called ORES. His research and systems engineering have been features in the tech media including Wired, MIT Tech Review, BBC Technology, The Register, and Netzpolitik among others. Dr. Halfaker reviews and coordinates for top-tier journals in the social computing and human center-AI space including ACM CHI, ACM GROUP, ACM CSCW, Transactions on Social Computing, WWW, and JASIST. Homepage: https://www.microsoft.com/en-us/research/people/ahalfaker/ . More information In this second edition on the topic of "Responsible Use of Data", we take a multi-disciplinary view and explore further lessons learned from success stories and examples in which the irresponsible use of data can create and foster inequality and inequity, perpetuate bias and prejudice, or produce unlawful or unethical outcomes. Our aim is to discuss and draw certain guidelines to make the use of data a responsible practice. Join us To receive announcements of upcoming presentations and events organized by TAFF and get the Zoom link to join the presentations, join our mailing list . TAFF-WIS Delft Visit the website of The Academic Fringe Festival

The Academic Fringe Festival - Nithya Sambasivan: The Myopia of Model Centrism

The Academic Fringe Festival - Nithya Sambasivan: The Myopia of Model Centrism 11 April 2022 17:00 till 18:00 - Location: Online by Nithya Sambasivan Abstract AI models seek to intervene in increasingly higher stakes domains, such as cancer detection and microloan allocation. What is the view of the world that guides AI development in high risk areas, and how does this view regard the complexity of the real world? In this talk, I will present results from my multi-year inquiry into how fundamentals of AI systems---data, expertise, and fairness---are viewed in AI development. I pay particular attention to developer practices in AI systems intended for low-resource communities, especially in the Global South, where people are enrolled as labourers or untapped DAUs. Despite the inordinate role played by these fundamentals on model outcomes, data work is under-valued; domain experts are reduced to data-entry operators; and fairness and accountability assumptions do not scale past the West. Instead, model development is glamourised, and model performance is viewed as the indicator of success. The overt emphasis on models, at the cost of ignoring these fundamentals, leads to brittle and reductive interventions that ultimately displace functional and complex real-world systems in low-resource contexts. I put forth practical implications for AI research and practice to shift away from model centrism to enabling human ecosystems; in effect, building safer and more robust systems for all. Speaker Biography Dr. Nithya Sambasivan is a sociotechnical researcher whose work is in solving hard, socially-important design problems impacting marginalised communities in the Global South. Her current research re-imagines AI fundamentals to work for low-resource communities. Dr. Sambasivan's work has been widely covered in venues like VentureBeat, ZDnet, Scroll.in, O’Reilly, New Scientist, State of AI report, HackerNews and more, while influencing public policy like the Indian government’s strategy for responsible AI and motivating the NeurIPS Datasets track. As a former Staff Research Scientist at Google Research, she pioneered several original, award-winning research initiatives such as responsible AI in the Global South, human-data interaction, gender equity online, and next billion users, which fundamentally shaped the company’s strategy for emerging markets, besides landing as new products affecting millions of users including in Google Station, Search, YouTube, Android, Maps & more. Dr. Sambasivan founded and managed a blueprint HCI team in Google Research Bangalore, and set up the Accra HCI team, in contexts with limited existing HCI pipelines. Simultaneously, her research has received several best paper awards at top-tier computing conferences. Homepage: https://nithyasambasivan.com/ . More information In this second edition on the topic of "Responsible Use of Data", we take a multi-disciplinary view and explore further lessons learned from success stories and examples in which the irresponsible use of data can create and foster inequality and inequity, perpetuate bias and prejudice, or produce unlawful or unethical outcomes. Our aim is to discuss and draw certain guidelines to make the use of data a responsible practice. Join us To receive announcements of upcoming presentations and events organized by TAFF and get the Zoom link to join the presentations, join our mailing list . TAFF-WIS Delft Visit the website of The Academic Fringe Festival

Half Height Horizontal

NWO grants funding for innovative research on physical experimental environments

How to move from experiment to mainstream? A consortium led by professor Tamara Metze, has been awarded a prestigious grant from the Netherlands Organisation for Scientific Research (NWO). In search for pathways toward more sustainable futures, Metze and her team will explore how various innovations in field labs such as The Green Village, in urban living labs such as Engy Lab South-East in Amsterdam, and in all sorts of citizens’ initiatives, can be mainstreamed and make more impact on sustainability transitions. Pilot paradox The project ‘From EXperiment to sustainable change: TRAnsformative methodologies for Innovation and learning’ (EXTRA) seeks to overcome a persistent “pilot paradox”. In this paradox, much experimentation takes place but long-term systemic impact remains difficult. Researchers together with all sorts of change makers will synthesise existing knowledge on how to mainstream, upscale, spread, broaden and deepen developed innovations. Tamara Metze: ‘I am excited to unravel what are effective ways of cocreation that lead to mainstreaming the positive changes made in experimental environments. We will figure out how learning and innovation can lead to lasting changes in regulations, policies, and financial systems and the biophysical environment.’ Tamara Metze Read the NWO press release Actionable tools The project is crucial for accelerating sustainability transitions. By refining methodologies for mission-driven experimentation and develop hands on tools for all sorts of change-makers, it will be easier to mainstream the sustainable lessons and innovations. ‘These tools will not only aid grassroots innovators but also influence institutional and organisational structures, ensuring that lessons learned from experiments are better anchored in policies, regulations, and organisations’, explains Metze. The project will employ a transdisciplinary action research approach, bringing together knowledge from various disciplines and policy domains. By co-creating solutions with public and private partners, the research will have an immediate impact. In the long term, the project aims to build a more efficient innovation ecosystem, contributing to more impactful and sustainable outcomes for both society and the environment. Projectpartners TU Delft, VU Amsterdam, Wageningen University & Research, Hogeschool van Amsterdam, Erasmus Universiteit Rotterdam, Hogeschool Rotterdam, The Green Village, AMS Institute; PBL Planbureau voor de Leefomgeving, WoonFriesland, Dijkstra Draisma, Provincie Noord-Holland, Ministerie van Binnenlandse Zaken, PRICE / Almere, BouwLab, Alliantie Samen Nieuw-West, Innovation Quarter.

Unusual waves grow way beyond known limits

Waves that come from multiple directions are extremer than extreme. These remarkable deep-sea waves can be four times steeper than what was previously imagined, as is shown in research by TU Delft and other universities that was published in Nature today. A long time ago, stories were told of mysterious rogue waves that materialised out of nowhere and could topple even the largest ships. These waves lost their mythical character when the first rogue wave was recorded at the Draupner platform in the North Sea. In 2018, Ton van den Bremer and his colleagues at the Universities of Edinburgh and Oxford managed to recreate the Draupner wave in the lab for the first time ever, and this opportunity to study freak waves closely produced unexpected insights. Multiple waves push up water New research by the research consortium now shows that these remarkable waves do not break when traditional theories hold they should, the secret behind which lies in how they arise. Ton van den Bremer, expert on fluid mechanics at TU Delft and led the study, explains: “When most people think of waves, they think of the rolling waves you’d find on a beach. The type of wave we studied occurs in open water and arises when waves coming from multiple directions come together. When these waves with a high directional spread converge, the water is pushed upwards, forming a partially standing wave. An example of this is known as a crossing wave. How crossing waves arise Under certain conditions at sea, waves from multiple directions occur. This can happen in a place where two seas meet, or where winds suddenly change direction, as in a hurricane. When waves from two directions meet, a cross wave occurs, provided their directions are far enough apart. The study also shows that the further apart the directions are, the higher the resulting cross-wave. Travelling waves break when they reach a certain limit, this is when they reach their maximum steepness. The study shows that waves with a multidirectional spreading can get as much as 80% steeper than this limit before they start breaking, which means they can get almost twice as high as ‘normal waves’ before they start to break. Travelling wave (l) and a wave with high directional spreading (r) Breaking waves that grow Next, the researchers found another highly unusual phenomenon that defies existing theories, a phenomenon that is unprecedented according to Van den Bremer: “Once a conventional wave breaks, it forms a white cap, and there is no way back. But when a wave with a high directional spreading breaks, it can keep growing.” The study shows that these enormous waves can grow to twice their original steepness while breaking, which is already twice bigger than the conventional limit. Together, the waves can grow four times steeper than previously thought possible. Damage to offshore structures The knowledge that multidirectional waves can become as much as four times larger than was deemed possible can help design safer marine structures. "The three-dimensionality of waves is often overlooked in the design of offshore wind turbines and other structures in general; our findings suggest this leads to designs that are less reliable", says Mark McAllister of the University of Oxford, who led the experiments and is now a senior scientist at Wood Thilsted. Innovative vertical sensors made it possible to take accurate 3D measurements of waves. Innovative 3D measurement method A 3D measurement method developed in the FloWave lab paved the way for these new insights. “Conventional 2D wave measurement methods weren’t up to the task”, Van den Bremer explains, which is why the research group designed a new way to create 3D wave measurements. Ross Calvert of the University of Edinburgh: “This is the first time we've been able to measure wave heights at such high spatial resolution over such a big area, giving us a much more detailed understanding of complex wave breaking behaviour." FloWave Ocean Energy Research Facility in Edinburgh. The circular basin has a diameter of 25 metres and can be used to generate waves from multiple directions. Header image by: Fabien Duboc