Filter results

9839 resultaten

Reimagining river cities: The University of São Paulo, TU Delft and Resilient Delta enter 5-year partnership

This April, the University of São Paulo and TU Delft launched a 5-year joint research project on river cities and ports, focusing on the intersections between climate action and health the urban environment The Tietê river makes its start in foothills immediate east of São Paulo, flowing through this expansive metropolis through a series of waterways. Eventually these waters coalesce with the Paraná river, forming an expansive transnational river delta that enters the Atlantic Ocean near Buenos Aires, Argentina. According to Prof. Alexandre Delihaicov, the culture of design for river cities emphasizes the architecture of place, the multiple dimension of water and its civic character, where rivers serve as structuring elements in urban and regional design. Viewing the hydrographic basin as a unit for planning and intersectoral management and governance in public administration transforms the approach to infrastructure and city development. Delihaicov leads the “Laboratório de Projetos” (Design Lab) and the “Architecture Design of Fluvial Urban Infrastructures - Grupo Metrópole Fluvial” at the Faculty of Architecture and Urbansim at the University of São Paulo, which has conducted extensive research-by-design projects on several aspects of urban water, the environment, and liveability in the region. Many of the timely and complex challenges facing this vital urban water system—and its connections throughout South America—resonate with those found here in the Rhine-Meuse-Scheldt delta in Northwest Europe, which culminates in the highly urbanized Greater Rotterdam region. The scale and urgency of these challenges was underscored by historic floods in the state of Rio Grade do Sul in recent weeks. In addition to substantial loss of life, hundreds of thousands have been displaced from their homes, and large parts of cities including Porto Alegre remain underwater. Many communities may be permanently displaced by the events. According to Dr. Taneha K. Bacchin, there is an urgent need for a paradigm shift in urban and regional development, one that is more sensitive and responsive to the unfolding state of criticality, socio-environmental vulnerability, and risk. Bacchin has been invited to join multiple local, state and national crisis management and reconstruction projects in the wake of the events. As an Associate Professor of Urbanism at TU Delft, Bacchin also has extensive academic leadership experience in major research initiatives like Water4Change and Redesigning Deltas . Shared recognition of the need for action and cooperation motivates this five year joint research program, “Network of river port cities: Design at the intersection of climate action and urban-environmental health”. The cooperation focuses on the interrelations among six key areas: water, energy transition, nature-based economy, hybrid green-blue infrastructure, transport infrastructure and mobility, health and wellbeing in the built environment. The exchange will facilitate peer-to-peer learning within the larger geographic context of highly dynamic landwater regions, as Deltas, offering global perspectives and regenerative insights. The international and transdisciplinary cooperation builds on a long history of cooperation between the University of São Paulo and TU Delft , including a visit by the Rector of USP to TU Delft in February 2024. It is also the first joint collaboration to also include as partner the Resilient Delta Initiative. “By expanding this relationship to include Erasmus University Rotterdam and other key stakeholders through the Resilient Delta initiative, we can tap new opportunities to speed up our learning, innovation, and intervention,” says Arjan van Timmeren, Scientific Director of RDi. “This program brings fantastic opportunites to strengthen how our universities work together and with key stakeholders in our home cities and regions.” The program connects researchers and practitioners around five research domains and twinned real-world cases. Innovations in water-based mobility, solutions for safe living in climate-vulnerable areas, and strategies for weaving ecological awarness into everyday urban life are among the focuses of the program. The contours of the partnership were sketched out over the course of a three-day seminar in São Paulo in April 2024. This included reflections on current and ongoing transdisciplinary research programs in Brazil and the Netherlands. More than fifty delegates participated in joint presentations hosted by the Municipality of São Paulo, which aims to feed a new Waterway Plan for São Paulo through research-by-design projects. Pedro Martin Fernandes, President of São Paulo Urbanismo, underscored the city’s aspirations for its water infrastructure: “We need to change the city’s relationship with water. Through the transformation and creation of public spaces, we want to change people’s view of this resource.” Resilient Delta will help to resource and co-design the cooperation process, leveraging insights from a growing team of ‘gluon’ knowledge integration experts and insights from ongoing urban and regional collaborations like the Maasterras redevelopment . “This will be particular important for securing successful joint working across science and practice, but also within and between our two urban regions,” says Zac Taylor, Academic Lead for Deltas at RDi. “The complexity and urgency of the assignment before us demands novel approaches to creating knowledge for action. With these creative approaches, we can and must learn to speed up our learning and action between science and practice, and between our two regions.”

Recent accreditations enhance value of lifelong learning offer

Recent accreditations enhance value of lifelong learning offer In today's competitive job market, staying ahead of the curve is essential. The TU Delft Extension School for Continuing Education’s recent accreditations from professional bodies help professionals do just that. Importance of accreditation Accreditation not only affirms the quality of our courses but also their credibility in the educational and professional landscape. For learners, this means an extra aid in career progression. External accreditation ensures our courses and programs are valued by professional associations, providing learners with the confidence that independent bodies recognise the relevance of their education. ― Clelia Paraluppi - Quality Assurance Officer Commitment to excellence The Extension School delivers high-quality online courses designed for professionals in engineering, design, and science. “By emphasising flexibility and accessibility, we enable professionals globally to advance their education without pausing their careers. Our high-standard instruction, course materials, and assessment ensure that our offerings are inherently valuable.” says Maaike van Buul, Manager Business Development. She goes on to explain that, “We continually seek to enhance this value and one way to do that is for courses to be externally accredited.” Maaike van Buul - Manager Business Development Achieving accreditation We recently secured accreditations for Medical Technology courses, adding to existing ones for Water Treatment — fields in which TU Delft excels. Obtaining global accreditation is challenging due to numerous accrediting bodies across sectors and countries. We are therefore pleased to grow the number of accredited courses we offer. This gives learners and their employers a recognised mark of quality regardless of their location. Before granting accreditation, associations thoroughly review: Course learning objectives: alignment with industry standards Assessment: effectiveness in measuring objectives Institution’s profile: credibility and reputation Target audience: relevance to learners’ needs Instructors: expertise and experience Study load: appropriateness for participants Accredited courses signify that our programs meet high-quality standards, reflecting our commitment to excellence. These endorsements are a source of pride and a testament to our educational rigour. Industry perspectives Bart van Straten, an industry expert and prolific lecturer of courses on circularity in the hospital industry, elaborates on the significance of accreditation in professional fields: "Accredited courses are perceived as more valuable, particularly in the medical industries, due to their assurance of quality, employer recognition, potential for career advancement, and transferability of credits. Accreditation sets a standard within higher education that aligns with industry needs and professional standards, enhancing both the individual's qualifications and the industry's confidence." Van Straten also highlights the recognition of accredited courses by employers: "The medical industry inherently values accreditation, as many medical training programs require it. Continuous Professional Development (CPD) accreditation is essential for ensuring the quality, relevance, and recognition of professional training programs. It aligns training with industry needs, providing a minimum education standard and ensuring compliance with regulatory standards. Professionals who follow accredited programs are more likely to be recognised by employers for maintaining high standards of competence and continuous improvement." Bart van Straten - Expert in the field of sustainability and the circular healthcare economy Current course and program accreditations Medical Technology Portfolio - we received accreditation from the following bodies in the listed courses: Dutch Association for Technical Medicine – Nederlandse Vereniging voor Technische Geneeskunde (NVvTG) Professional Certificate Program (PCP): Circular Strategies for Sustainable Healthcare Dutch Association for Sterilisation of Medical Instruments – Sterilisatie Vereniging Nederland (SVN) Professional Certificate Program (PCP): Circular Strategies for Sustainable Healthcare Dutch Association for Specialists in Sterile Medical Tools – Vereniging van Deskundigen Steriele Medische Hulpmiddelen (VDSMH) Circular Strategies for Hospitals Circular Strategies for MedTech Suppliers Biomedical Equipment: A Practical Approach to Health Technology Management Biomedical Equipment: Repair, Maintenance and Healthcare Technology Dutch Association for Hospital Instrumentation Technicians – Vereniging van Ziekenhuis-instrumentatietechnici (VZI) Circular Strategies for Hospitals Circular Strategies for MedTech Suppliers Waste Water and Water Treatment Courses – The Chartered Institution of Water and Environmental Management (CIWEM) accredited the following courses: Aerobic Granular Sludge Technology for Wastewater Treatment Nanofiltration and Reverse Osmosis in Water Treatment High-Rate Anaerobic Wastewater Treatment

Half Height Horizontal

TU Delft jointly wins XPRIZE Rainforest drone competition in Brazil

TU Delft wint gezamenlijk XPRIZE Rainforest competitie in de Amazone, Brazilië Stel je zich voor: snelle en autonome robottechnologie gebruiken voor onderzoek naar de groene en vochtige longen van onze planeet; onze wereldwijde regenwouden. Drones die autonoom eDNA samplers en netten voor in boomtoppen inzetten, brengen de rijke biodiversiteit van deze complexe ecosystemen aan het licht en onthullen de effecten van menselijke activiteiten op de natuur en klimaatverandering. Op 15 november 2024, na vijf jaar intensief onderzoek en competitie, bereikte het ETHBiodivX-team, waarvan ook Luchtvaart- en Ruimtevaartonderzoekers van de TU Delft, Salua Hamaza en Georg Strunck, deel uitmaakten, een opmerkelijke mijlpaal: het winnen van de XPRIZE Rainforest Bonus Prize voor uitmuntende inspanningen bij het gezamenlijk ontwikkelen van inclusieve technologie voor natuurbehoud. Het doel: geautomatiseerde technologie en methoden ontwikkelen om bijna realtime inzichten te krijgen in biodiversiteit - het leveren van noodzakelijke gegevens die kunnen bijdragen aan behoud en beleid, duurzame bio-economieën kunnen ondersteunen en inheemse volkeren en lokale gemeenschappen, die de belangrijkste beschermers en kennishouders zijn van de tropische regenwoudens op aarde, meer macht kunnen geven. Het ETHBiodivX team, bestaande uit experts in Robotica, eDNA en Data Insights, ging de enorme uitdaging aan om de manier waarop we ecosystemen monitoren te automatiseren en te stroomlijnen. Aan het hoofd van de robotica-afdeling, een samenwerking tussen Universitair Hoofddocent Salua Hamaza van de TU Delft, prof. Stefano Mintchev van de ETH Zürich en prof. Claus Melvad en Toke Thomas Høye, ontwikkelt baanbrekende robotoplossingen om autonoom ecologische en biologische gegevens te verzamelen. “We stonden voor de immense uitdaging om robots in het wild in te zetten - en niet zomaar in een buitenomgeving, maar in een van de meest veeleisende en onbekende: de natte regenwouden. Dit vereiste buitengewone inspanningen om robuustheid en betrouwbaarheid te garanderen, waarbij we de grenzen verlegden van wat de hardware kon bereiken voor autonome gegevensverzameling van beelden, geluiden en eDNA in het Amazonegebied”, zegt universitair hoofddocent Hamaza. “Uiteindelijk zal deze technologie beschikbaar zijn voor inheemse gemeenschappen als hulpmiddel om de voortdurende veranderingen in de biodiversiteit van het bos beter te begrijpen, die de lokale bevolking voorziet van essentiële hulpbronnen zoals voedsel en onderdak.” . . . .

Students Amos Yusuf, Mick Dam & Bas Brouwer winners of Mekel Prize 2024

Master students Amos Yusuf, from the ME faculty (Mick Dam, from the EEMCS faculty and graduate Bas Brouwer have won the Mekel Prize 2024 for the best extra scientific activity at TU Delft: the development of an initiative that brings master students into the classroom teaching sciences to the younger generations. The prize was ceremonially awarded by prof Tim van den Hagen on 13 November after the Van Hasselt Lecture at the Prinsenhof, Delft. They received a statue of Professor Jan Mekel and 1.500,- to spend on their project. Insights into climate change are being openly doubted. Funding for important educational efforts and research are being withdrawn. Short clips – so called “reels” – on Youtube and TikTok threaten to simplify complex political and social problems. AI fakes befuddle what is true and what is not. The voices of science that contribute to those discussion with modesty, careful argument and scepticism, are drowned in noise. This poses a threat for universities like TU Delft, who strive to increase student numbers, who benefit from diverse student populations and aim to pass on their knowledge and scientific virtues to the next generation. It is, therefore, alarming that student enrolments to Bachelor and Master Programs at TU Delft have declined in the past year. Students in front of the class The project is aimed to make the sciences more appealing to the next generation. They have identified the problem that students tend miss out on the opportunity of entering a higher education trajectory in the Beta sciences – because they have a wrong picture of such education. In their mind, they depict it as boring and dry. In his pilot lecture at the Stanislas VMBO in Delft, Amos Yusuf has successfully challenged this image. He shared his enthusiasm for the field of robotics and presented himself as a positive role model to the pupils. And in return the excitement of the high school students is palpable in the videos and pictures from the day. The spark of science fills their eyes. Bas Brouwer Mick Dam are the founders of NUVO – the platform that facilitates the engagement of Master Students in high school education in Delft Their efforts offer TU Delft Master Students a valuable learning moment: By sharing insights from their fields with pupils at high school in an educational setting, our students can find identify their own misunderstandings of their subject, learn to speak in front of non-scientific audiences and peak into education as a work field they themselves might not have considered. An extraordinary commitment According to the Mekel jury, the project scored well on all the criteria (risk mitigation, inclusiveness, transparency and societal relevance). However, it was the extraordinary commitment of Amos who was fully immersed during his Master Project and the efforts of Brouwer and Dam that brought together teaching and research which is integral to academic culture that made the project stand out. About the Mekel Prize The Mekel Prize will be awarded to the most socially responsible research project or extra-scientific activity (e.g. founding of an NGO or organization, an initiative or realization of an event or other impactful project) by an employee or group of employees of TU Delft – projects that showcase in an outstanding fashion that they have been committed from the beginning to relevant moral and societal values and have been aware of and tried to mitigate as much as possible in innovative ways the risks involved in their research. The award recognizes such efforts and wants to encourage the responsible development of science and technology at TU Delft in the future. For furthermore information About the project: https://www.de-nuvo.nl/video-robotica-pilot/ About the Mekel Prize: https://www.tudelft.nl/en/tpm/our-faculty/departments/values-technology-and-innovation/sections/ethics-philosophy-of-technology/mekel-prize

Veiligere en efficiëntere bloedvatbehandelingen door innovatieve kathetertechnologie

Wereldwijd worden jaarlijks meer dan 200 miljoen katheters gebruikt voor de behandeling van vaatziekten zoals hartaandoeningen en slagadervernauwing. Hoewel essentieel, brengt het gebruik van katheters risico’s met zich mee: wrijving tussen de katheter en de vaatwand kan complicaties veroorzaken. Een nieuwe technologie, ontwikkeld door Mostafa Atalla en zijn team, biedt een oplossing. Met één druk op de knop kan de wrijving van de katheter worden aangepast, van maximale grip naar volledige gladheid. Deze innovatie belooft niet alleen veiligere, maar ook efficiëntere endovasculaire procedures mogelijk te maken. De resultaten zijn gepubliceerd in het wetenschappelijk tijdschrift IEEE. Slimme katheter met instelbare wrijving Het nieuwe katheterprototype is uitgerust met geavanceerde technologie die de wrijving tussen de katheter en vaatwand nauwkeurig reguleert via ultrasone trillingen. Dit mechanisme zet via ultrasone trillingen de dunne vloeistoflaag onder druk waardoor de wrijving dynamisch kan worden aangepast: lage wrijving voor soepele navigatie door bloedvaten en hogere wrijving voor optimale stabiliteit tijdens een procedure. Tests tonen aan dat deze techniek de wrijving op harde oppervlakken met gemiddeld 60% vermindert en op zachte oppervlakken met 11%. Veelbelovende resultaten Bij experimenten op dierlijk aortaweefsel heeft het prototype zijn potentieel bewezen. Deze innovatie kan niet alleen bij vaatbehandelingen worden ingezet, maar mogelijk ook bij andere medische procedures, zoals interventies in de darmen. De onderzoekers zijn nu bezig de technologie verder te ontwikkelen en te testen op bredere toepassingen. Meer informatie Publicatie DOI: 10.1109/TMRB.2024.3464672 Toward Variable-Friction Catheters Using Ultrasonic Lubrication | IEEE Journals & Magazine | IEEE Xplore Mostafa Atalla: m.a.a.atalla@tudelft.nl/ Aimee Sakes: a.sakes@tudelft.nl Wil je een demonstratie bijwonen of in contact komen met een van de onderzoekers neem contact op met: Fien Bosman, persvoorlichter TU Delft Health: f.j.bosman@tudelft.nl/ 0624953733