Filter results

48116 results

Education

Education By the TU Delft Safety & Security Institute Free & open for participants from all Dutch universities & universities of applied science PhD & postdoc course ‘Safe by Design’ Safety is becoming increasingly relevant in various fields. The renewed focus on Safe by Design (SbD) tries to identify and include safety (along with other important values such as sustainability, security, and circularity) at an early stage of design. Each year we offer PhD course that offers a general outlook on SbD, then dives into different disciplinary perspectives on SbD and its industrial applications and ends with (ethical) reflections on SbD. By other TU Delft units Online course Road Safety Road traffic accidents currently result in about 1.25 million deaths each year and leave between 20 and 50 million people with non-fatal injuries. In addition to the impact on human life and safety this also results in significant economic losses. This course will enable the design of safer roads, develop better road safety plans and policies and ensure the presence of the human factor in both policy and design. offline course for professionals, in Dutch only Management of Safety, Health & Environment Good working conditions and safety on the work floor, managing processes with minimal impact on the environment and balancing safety and security levels with conflicting values and uncertainties are important aspects of efficient and sustainable business operations. The program Management of Safety, Health & Environment (MoSHE) prepares professionals to play a central role in the day-to-day implementation of safety requirements and the development of future safety policy at companies and institutions. Online course Cybersecurity for Managers and Executives: Taking the Lead If you are a leader, or preparing for a leadership role, you are accountable for the cyber maturity of your organization. This course will equip you with the framework, vocabulary and understanding of cyber risks, and will give you the confidence to take the lead in cybersecurity initiatives. Online course Economics of Cybersecurity: Solutions Cybersecurity breaches are the outcome of bad incentives. This course teaches you how to think about rational security investments, aligning security with the business strategy, insurance, incident response and much more. As well as individual organizations, it also covers solutions to address market failures. online course Risk in Modern Society This course sheds light on the broad concept of risk. It closely examines various types of safety and security risks, and how these are perceived and dealt with in a wide array of professional and academic fields, ranging from criminology, counter-terrorism and cyber security, to philosophy, safety and medical science. Developed in collaboration with scholars from three universities (Leiden, Delft and Erasmus), this course will search for answers to questions such as: “what is risk?”, “how do we study and deal with risk?”, “does ‘perceived risk’ correspond to 'real' risk?”, and “how should we deal with societal perceptions of risk, safety and security? Online course Forencis Engineering: Learning from Failures What do collapsed buildings, infected hospital patients, and crashed airplanes have in common? If you know the causes of these events and conditions, they can all be prevented. In this course, you will learn how to use the TU Delft mind-set to investigate the causes of such events so you can prevent them in the future. Online course Economics of Cybersecurity: Users and Attackers Are humans the weakest link in cybersecurity? Using an economics perspective, this course will give you the latest insights into the behavior of users, and how they and their criminal adversaries fit into larger systems, so that you can design the best responses to guard against your most critical risks.

Organisation

Organisation structure Executive Board Justin Dauwels Scientific co-director Faculty of Electrical Engineering, Mathematics & Computer Science AI and machine learning, with applications to autonomous systems and national security (e.g., crime prevention and detection, counter-terrorism) Eleonora Papadimitriou Scientific co-director Faculty of Technology, Policy & Management Transport safety (road, maritime, rail, aviation), human factors in transport safety, quantitative methods and AI in transport safety, ethical issues in transport safety Arjo Loeve Board member Faculty of Mechanical Engineering Forensic engineering: analysing failures of medical-technological systems and trauma mechanisms in biomechanical system, engineering for forensics: developing forensic technology. Maria Nogal Board member Faculty of Civil Engineering and Geosciences Resilience of the built environment, climate change adaptation (e.g., wildfires), integration of social aspects (e.g., human capacity of adaptation or behavioural change during stressful situations), performance of engineering systems, informed decision-making processes Simon Parkin Board member Faculty of Technology, Policy & Management Cybersecurity, specialising in human-centred security - usability and perceptions of security-related technologies, security behaviour change, security economics, and decision-making in security management. Alexei Sharpans'kykh Board member Faculty of Aerospace Engineering Artificial Intelligence, multiagent systems, safety, security, aviation, sustainable air transport, automation, resilience of the air transport system Eveline Vreede Executive manager Tarik Bousair Student assistant Steering Committee The Steering Committee consists of the deans of the TU Delft Faculties that participate in the Safety & Security Institute. Advisory Board The advisory board provides non-binding solicited and unsolicited strategic advice to the Executive Board. By providing unbiased insights and ideas regarding Safety and Security matters, a deeper understanding and discussing relevant trends in the broader Safety & Security ecosystem can be achieved. The advisory board is a ‘wise counsel’ on issues raised by the Executive Board, in doing so they encourage and support the exploration of new ideas, research topics and relevant networks. Margot Weijnen Bas Jonkman Annemieke de Vries Pieter van Gelder Max Mulder Mauro Conti Aleksander Yarovoy Ruud van Ommen Past directors Behnam Taebi Scientific director 2019-2024 Pieter van Gelder Scientific director 2014-2019

Half Height Horizontal

Students Amos Yusuf, Mick Dam & Bas Brouwer winners of Mekel Prize 2024

Master students Amos Yusuf, from the ME faculty (Mick Dam, from the EEMCS faculty and graduate Bas Brouwer have won the Mekel Prize 2024 for the best extra scientific activity at TU Delft: the development of an initiative that brings master students into the classroom teaching sciences to the younger generations. The prize was ceremonially awarded by prof Tim van den Hagen on 13 November after the Van Hasselt Lecture at the Prinsenhof, Delft. They received a statue of Professor Jan Mekel and 1.500,- to spend on their project. Insights into climate change are being openly doubted. Funding for important educational efforts and research are being withdrawn. Short clips – so called “reels” – on Youtube and TikTok threaten to simplify complex political and social problems. AI fakes befuddle what is true and what is not. The voices of science that contribute to those discussion with modesty, careful argument and scepticism, are drowned in noise. This poses a threat for universities like TU Delft, who strive to increase student numbers, who benefit from diverse student populations and aim to pass on their knowledge and scientific virtues to the next generation. It is, therefore, alarming that student enrolments to Bachelor and Master Programs at TU Delft have declined in the past year. Students in front of the class The project is aimed to make the sciences more appealing to the next generation. They have identified the problem that students tend miss out on the opportunity of entering a higher education trajectory in the Beta sciences – because they have a wrong picture of such education. In their mind, they depict it as boring and dry. In his pilot lecture at the Stanislas VMBO in Delft, Amos Yusuf has successfully challenged this image. He shared his enthusiasm for the field of robotics and presented himself as a positive role model to the pupils. And in return the excitement of the high school students is palpable in the videos and pictures from the day. The spark of science fills their eyes. Bas Brouwer Mick Dam are the founders of NUVO – the platform that facilitates the engagement of Master Students in high school education in Delft Their efforts offer TU Delft Master Students a valuable learning moment: By sharing insights from their fields with pupils at high school in an educational setting, our students can find identify their own misunderstandings of their subject, learn to speak in front of non-scientific audiences and peak into education as a work field they themselves might not have considered. An extraordinary commitment According to the Mekel jury, the project scored well on all the criteria (risk mitigation, inclusiveness, transparency and societal relevance). However, it was the extraordinary commitment of Amos who was fully immersed during his Master Project and the efforts of Brouwer and Dam that brought together teaching and research which is integral to academic culture that made the project stand out. About the Mekel Prize The Mekel Prize will be awarded to the most socially responsible research project or extra-scientific activity (e.g. founding of an NGO or organization, an initiative or realization of an event or other impactful project) by an employee or group of employees of TU Delft – projects that showcase in an outstanding fashion that they have been committed from the beginning to relevant moral and societal values and have been aware of and tried to mitigate as much as possible in innovative ways the risks involved in their research. The award recognizes such efforts and wants to encourage the responsible development of science and technology at TU Delft in the future. For furthermore information About the project: https://www.de-nuvo.nl/video-robotica-pilot/ About the Mekel Prize: https://www.tudelft.nl/en/tpm/our-faculty/departments/values-technology-and-innovation/sections/ethics-philosophy-of-technology/mekel-prize

New catheter technology promises safer and more efficient treatment of blood vessels

Each year, more than 200 million catheters are used worldwide to treat vascular diseases, including heart disease and artery stenosis. When navigating into blood vessels, friction between the catheter and the vessel wall can cause major complications. With a new innovative catheter technology, Mostafa Atalla and colleagues can change the friction from having grip to completely slippery with the flick of a switch. Their design improves the safety and efficiency of endovascular procedures. The findings have been published in IEEE. Catheter with variable friction The prototype of the new catheter features advanced friction control modules to precisely control the friction between the catheter and the vessel wall. The friction is modulated via ultrasonic vibrations, which overpressure the thin fluid layer. This innovative variable friction technology makes it possible to switch between low friction for smooth navigation through the vessel and high friction for optimal stability during the procedure. In a proof-of-concept, Atalla and his team show that the prototype significantly reduces friction, averaging 60% on rigid surfaces and 11% on soft surfaces. Experiments on animal aortic tissue confirm the promising results of this technology and its potential for medical applications. Fully assembled catheters The researchers tested the prototype during friction experiments on different tissue types. They are also investigating how the technology can be applied to other procedures, such as bowel interventions. More information Publicatie DOI : 10.1109/TMRB.2024.3464672 Toward Variable-Friction Catheters Using Ultrasonic Lubrication | IEEE Journals & Magazine | IEEE Xplore Mostafa Atalla: m.a.a.atalla@tudelft.nl Aimee Sakes: a.sakes@tudelft.nl Michaël Wiertlewski: m.wiertlewski@tudelft.nl Would you like to know more and/or attend a demonstration of the prototype please contact me: Fien Bosman, press officer Health TU Delft: f.j.bosman@tudelft.nl/ 0624953733

A key solution to grid congestion

On behalf of the TU Delft PowerWeb Institute, researchers Kenneth Brunninx and Simon Tindemans are handing over a Position Paper to the Dutch Parliament on 14 November 2024, with a possible solution to the major grid capacity problems that are increasingly cropping up in the Netherlands. The Netherlands is unlikely to meet the 2030 climate targets, and one of the reasons for this is that large industry cannot switch to electricity fast enough, partly because of increasingly frequent problems around grid capacity and grid congestion. In all likelihood, those problems will actually increase this decade before they can decrease, the researchers argue. The solution offered by the TU Delft PowerWeb Institute researchers is the ‘flexible backstop’. With a flexible backstop, the current capacity of the power grid can be used more efficiently without sacrificing safety or reliability. A flexible backstop is a safety mechanism that automatically and quickly reduces the amount of electricity that an electric unit can draw from the grid (an electric charging station or a heat pump) or deliver (a PV installation). It is a small device connected or built into an electrical unit, such as a charging station or heat pump, that ‘communicates’ with the distribution network operator. In case of extreme stress on the network, the network operator sends a signal to the device to limit the amount of power. Germany recently introduced a similar system with electric charging stations. The backstop would be activated only in periods of acute congestion problems and could help prevent the last resort measure, which is cutting off electricity to users. ‘Upgrading the electricity network remains essential, but in practice it will take years. So there is a need for short-term solutions that can be integrated into long-term planning. We, the members of the TU Delft PowerWeb Institute, call on the government, network operators and regulator to explore the flexible backstop as an additional grid security measure,’ they said. The entire Paper can be read here . Kenneth Brunninx Associate Professor at the Faculty of Engineering, Governance and Management, where he uses quantitative models to evaluate energy policy and market design with the aim of reducing CO2 emissions. Simon Tindemans is Associate Professor in the Intelligent Electrical Power Grids group at Faculty of Electrical Engineering, Mathematics and Computer Science. His research interests include uncertainty and risk management for power grids. TU Delft PowerWeb Institute is a community of researchers who are investigating how to make renewable energy systems reliable, future proof and accessible to everyone.

25 year celebration of formal collaboration between Delft University of Technology and the University of Campinas

On 25 October 2024 we celebrated 25 years of formal collaboration between Delft University of Technology and the University of Campinas. What began as a project to exchange some students in chemical engineering has now grown to a multifaceted and broad academic collaboration which accumulated into 24 joint research projects (>20 M Euro); 16 advanced courses and 15 Doctors with a Dual Degree PhD. Patricia Osseweijer, TU Delft Ambassador Brazil explained, “We are proud to show and reflect on this special day the added value we created resulting from our joint activities. The lessons we learned demonstrate that especially continuity of funds and availability for exchanges has contributed to joint motivation and building trust which created strong relations. This is the foundation for academic creativity and high-level achievements.” The program presented showcases of Dual Degree projects; research activities and education. It discussed the future objectives and new fields of attention and agree on the next steps to maintain and strengthen the foundation of strong relations. Telma Franco, Professor UNICAMP shared that “joint education and research has substantially benefitted the students, we see that back in the jobs they landed in,” while UNICAMP’s Professor Gustavo Paim Valenca confirmed that “we are keen to extend our collaboration to more engineering disciplines to contribute jointly to global challenges” Luuk van der Wielen highlighted that “UNICAMP and TU Delft provide valuable complementary expertise as well as infrastructures to accelerate research and innovation. Especially our joint efforts in public private partnerships brings great assets” To ensure our future activities both University Boards have launched a unique joint program for international academic leadership. This unique 7-month program will accommodate 12 young professors, 6 from each university. The programme began on 4 November 2024 in Delft, The Netherlands.