Filter results

47690 results

Solar charging of electrical vehicles

Solar charging of electrical vehicles Electric cars are seen as the sustainable future of transport. But they are only truly sustainable if the electricity used to charge them comes from sustainable sources and not from fossil fuels. This is why researchers and businesses are also looking into charging electric vehicles with solar panels. TU Delft has developed a quick charger together with the companies Power Research Electronics and Last Mile Solutions which can charge cars directly with electricity from solar panels. Direct current Solar photovoltaic panels (PV) generate direct current (DC) and this normally had to be converted to alternating current (AC) before it could be used to charge an electric car. ‘Charging stations are currently using the 50Hz AC network to exchange power between the solar panels and the vehicle,’ explains Gautham Ram. ‘However, this is not efficient or cost-effective, for two reasons. Firstly, converting to AC results in unnecessary steps and power loss. And, secondly, it requires two separate DC-AC converters, one for the vehicle and one for the solar panels, resulting in increased costs and size.’ Interim stage unnecessary ‘A more self-evident solution would be to use a single converter, which could charge the vehicle from the panels via a DC link while also being connected to the AC electricity grid. In this study, we therefore designed a 10kW converter with an internal DC link and three terminals, which can charge the vehicle both from the solar panels and the electricity grid. The integrated DC charger has a higher efficiency and is about three times smaller than existing solutions based on AC power exchange.’ The use of this charger means that the electricity grid is no longer needed as an interim stage in charging. In addition, the system works two ways. Not only can you charge your electric car with solar power, the energy from the charged car battery can also be used to supply your house or the grid with electricity, although this first requires conversion into alternating current. This concept is referred to as ‘vehicle-to-grid’ ‘The developed converter is used in a solar charging station, including smart charging algorithms. Charging the vehicle with solar energy resulted in zero CO2 emission, lower fuel costs, tax benefits and less dependence on the feed-in tariffs for renewable energy.’ Prof. dr. Pavol Bauer +31 15 27 84654 p.bauer@tudelft.nl dr. Ir. Gautham Ram +31 15 27 81898 g.r.chandramouli@tudelft.nl Links Award IDtechEx– Most Significant Innovation for Electric Vehicles https://www.tudelft.nl/2018/ewi/pavol-bauer-gautham-ram-and-menno-kardolus-awarded-most-significant-innovation-in-electric-vehicles-prize / Department of DC Systems, Energy Conversion & Storage https://www.tudelft.nl/en/eemcs/the-faculty/departments/electrical-sustainable-energy/dc-systems-energy-conversion-storage/ DIG IT Research Exhibition: https://www.youtube.com/watch?v=6FPWXQ9Bbec&t=8s Electric Cars: Technology Obtain a comprehensive understanding of electric mobility to lead projects and initiatives to success: https://online-learning.tudelft.nl/courses/electric-cars-technology / Related courses Partners

The ever challenging fight between strength and weight

Hey guys, Sasha here! When I began working at the Eco-Runner Team, I (as mathematician and physicist) never imagined that some day I would be doing structural analysis. Yet here I am, as Chief Structures, doing the work classically associated with Mechanical and Aerospace engineers. In this blog I shortly would like to tell you what I have actually done in this role over the last period, and how my background in the Applied Maths and Physics Bachelor has played a role in this. As Chief Structures I am responsible for the complete structural integrity of the body of the EcoRunner 9. The challenge is to make the car as light as possible while keeping strong enough. That means accounting for al the possible scenario’s in which forces are applied on the vehicle, and performing simulations to make sure the body is strong enough to withstand the force. An example such a scenario is carrying the vehicle with two people or simply the driver sitting inside. As for how light I am aiming for: About as light as a cat! To perform the necessary simulations, I use FEM software called ‘MSC Patran’ provided to us by InSumma, which together with Solico provide assistance and consulting during the process itself. With that help I am able to perform very accurate analyses of our body and can optimize it for weight. That process consists of three main steps: Firstly, the body has to be translated into the model, after which the possible load scenarios are integrated into the software. The final step is to iterate different structural designs. This in general means changing the type and amount of carbon fibre and honeycomb used. Now, most of the specific knowledge and skills that are required for this job, for example the concepts of stress or FEM analysis, are not discussed in my Bachelors. However, the general knowledge of numerical analysis, modelling and debugging, which I gained especially gained during my Bachelor Applied Mathematics has proven to be of high importance. With that, as well as the skill to find new creative ways to solve problems and understanding connections, I was able to perform the tasks at a high level and able to safe weight compared to the previous design. Looking to the future, I will have to adapt my model a bit to account for the changed rear-suspension design. After this I will create the lamination plan which the Lamination Department will use to produce the body. Then my job is done, and we will be another step closer to the lightest EcoRunner ever produced!

Using Scrum

It’s almost Christmas. This means that the end of the detailed design phase is in sight. This is the phase where everybody designs their subsystem to meticulous details. I have been working on the height control as electronics engineer: this means I design and produce the electric system and write the software for the actuation of the wings. Without proper height control we would not be able to fly! The detailed design phase is eight weeks long, which means that beforehand you have to make a planning to ensure we all make our deliverables. To help with maintaining this planning we have one person in the team who is busy fulltime ensuring that all people stick to their planning. In the case of people not sticking to their schedule, he will help them get back to it or look into the consequences and re-plan the yearly planning. We do need to have a working boat in July for Monaco, so this is an important job! To assist the planning our team makes use of a combination of Scrum and Waterfall methodology. Scrum is used a lot in software engineering so I was already familiar with this technique. Waterfall is used a lot more in other engineering fields, because it deals with tasks having to be done sequentially rather than when you feel like it. Because we are a multidisciplinary team, it works really well to combine these techniques. We start the week with department meetings, in which we update the engineers in our department what we did last week. Then you we ask ourselves questions like: “what do I need to do now?”, “What can I do within this week?” and “do I need to do certain tasks sequentially or on a certain date?” Then everybody makes a list of their to-do’s, and write them on a post-it with an estimation of the time it will take and a date if needed. Then we hang them on our scrumboard. To end this phase, we also needed to make a list of deliverables: these are tasks or concrete things that need to be completed by the end of the phase. In my list you can find among others: PCB design, choosing PCB components, connecting and reading of sensors. I finished all my deliverables a week early, which means that I could start on my production and enter the christmas break without stress! Happy holidays!

Collaboration between departments

As a member of the Software department in the Forze Hydrogen Electric Racing team, making the car ready to race is not only a one department’s job. Communication with the other departments is of high importance, especially with the departments were software is directly in contact with: Electronics and Control & Simulations. Collaborating with Electronics is necessary where software has to be written for newly designed hardware. The last project that was finished was an iteration of a new Power Distribution Unit, PDU for short, that gives power to all low-voltage components in the car, such as the embedded nodes, cooling pumps and sensors. The newly implemented sensors had to be read out correctly in software due to changes in the schematics, for example, series and parallel resistors to sensors changed. When implementing control in the car that was made by Control & Simulation, the Simulink model of a control system in the car is compiled to C++ which is put in the car. In the software, it must be made sure that all inputs and outputs are connected and integrated into the rest of the software. It was not always that the communication went smooth. A couple times, this resulted in long days and very short nights to integrate and fix software on time for an important test. However, the dedication of the whole team really shows when the people involved in preparation are ready to not stop working until problems are fixed and the car is ready to drive!

Half Height Horizontal

New LDE trainee in D&I office

Keehan Akbari has started since the beginning of September as a new LDE trainee in the Diversity and Inclusion office. What motivated him to work for the D&I office, what does he expect to achieve during this traineeship? Read the short interview below! What motivated you to pursue your LDE traineeship in Diversity and Inclusion office of the TU Delft? I completed both bachelor's and master's degrees in Cultural Anthropology and Development Sociology at Leiden University. Within these studies, my main area of interest was in themes of inclusion and diversity. After being hired as a trainee for the LDE traineeship, and discovering that one of the possible assignments belonged to the Diversity and Inclusion office, my choice was quickly made. I saw this as an excellent opportunity to put the theories I learned during my studies into practice. What specific skills or experiences do you bring to the D&I office that will help promote inclusivity on campus? I am someone who likes to connect rather than polarize, taking into account the importance of different perspectives and stakeholders. I believe that this is how one can achieve the most in fostering diversity and inclusion. You need to get multiple parties on board to get the best results. What are your main goals as you begin your role here, and how do you hope to make an impact? An important goal for me this year is to get students more involved in diversity and inclusion at the university. One way I will try to accomplish this is by contributing to the creation of D&I student teams. By establishing a D&I student team for faculties, it will be possible to deal with diversity- and inclusion-related issues that apply and relate to the specific department. How do you plan to engage with different (student) communities within the university? Since I am new to TU Delft, the first thing I need to do is expand my network here. Therefore, I am currently busy exploring the university and getting to know various stakeholders. Moreover, I intend to be in close contact with various student and study organizations to explore together how to strengthen cooperation on diversity and inclusion. Welcome to the team Keehan and we wish you lots of success with your traineeship!

Researchers from TU Delft and Cambridge University collaborate on innovative methods to combat Climate Change

For over a year and a half, researchers from TU Delft and the Cambridge University Centre for Climate Repair have worked together on groundbreaking techniques to increase the reflectivity of clouds in the fight against global warming. During a two-day meeting, the teams are discussing their progress. Researchers at Cambridge are focusing on the technical development of a system that can spray seawater, releasing tiny salt crystals into the atmosphere to brighten the clouds. The team from TU Delft, led by Prof. Dr. Ir. Herman Russchenberg, scientific director of the TU Delft Climate Action Program and professor of Atmospheric Remote Sensing, is studying the physical effects of this technique. Prof. Russchenberg emphasizes the importance of this research: "We have now taken the first steps towards developing emergency measures against climate change. If it proves necessary, we must be prepared to implement these techniques. Ideally, we wouldn't need to use them, but it's important to investigate how they work now." Prof. Dr. Ir. Stefan Aarninkhof, dean of the Faculty of Civil Engineering and Geosciences, expresses pride in the team as the first results of this unique collaboration are becoming visible. If the researchers in Delft and Cambridge can demonstrate the potential of the concept, the first small-scale experiments will responsibly begin within a year. This research has been made possible thanks to the long-term support from the Refreeze the Arctic Foundation, founded by family of TU Delft alumnus Marc Salzer Levi . Such generous contributions enable innovative and high-impact research that addresses urgent global challenges like climate change. Large donations like these enable the pursuit of innovative, high-impact research that may not otherwise be feasible, demonstrating how our collective effort and investment in science can lead to real, transformative solutions for global challenges like climate change. Climate-Action Programme

How system safety can make Machine Learning systems safer in the public sector

Machine Learning (ML), a form of AI where patterns are discovered in large amounts of data, can be very useful. It is increasingly used, for example, in chatbot Chat GPT, facial recognition, or speech software. However, there are also concerns about the use of ML systems in the public sector. How do you prevent the system from, for example, discriminating or making large-scale mistakes with negative effects on citizens? Scientists at TU Delft, including Jeroen Delfos, investigated how lessons from system safety can contribute to making ML systems safer in the public sector. “Policymakers are busy devising measures to counter the negative effects of ML. Our research shows that they can rely much more on existing concepts and theories that have already proven their value in other sectors,” says Jeroen Delfos. Jeroen Delfos Learning from other sectors In their research, the scientists used concepts from system safety and systems theory to describe the challenges of using ML systems in the public sector. Delfos: “Concepts and tools from the system safety literature are already widely used to support safety in sectors such as aviation, for example by analysing accidents with system safety methods. However, this is not yet common practice in the field of AI and ML. By applying a system-theoretical perspective, we view safety not only as a result of how the technology works, but as the result of a complex set of technical, social, and organisational factors.” The researchers interviewed professionals from the public sector to see which factors are recognized and which are still underexposed. Bias There is room for improvement to make ML systems in the public sector safer. For example, bias in data is still often seen as a technical problem, while the origin of that bias may lie far outside the technical system. Delfos: “Consider, for instance, the registration of crime. In neighbourhoods where the police patrol more frequently, logically, more crime is recorded, which leads to these areas being overrepresented in crime statistics. An ML system trained to discover patterns in these statistics will replicate or even reinforce this bias. However, the problem lies in the method of recording, not in the ML system itself.” Reducing risks According to the researchers, policymakers and civil servants involved in the development of ML systems would do well to incorporate system safety concepts. For example, it is advisable to identify in advance what kinds of accidents one wants to prevent when designing an ML system. Another lesson from system safety, for instance in aviation, is that systems tend to become more risky over time in practice, because safety becomes subordinate to efficiency as long as no accidents occur. “It is therefore important that safety remains a recurring topic in evaluations and that safety requirements are enforced,” says Delfos. Read the research paper .