Filter results

47690 results

Delft Conversations: Discussing Gender Diversity, Equity and Inclusion at TPM

Delft Conversations: Discussing Gender Diversity, Equity and Inclusion at TPM 19 March 2024 12:30 till 13:30 - Location: 31 Technology, Policy and Management, Hall A | Add to my calendar When the whole world is silent, even one voice becomes powerful. Malala Yousafzai Join the DEWIS lunch session to discuss career advancement, equal opportunities and working environment within the frame of communication and action at TPM with the Dean of TPM, Aukje Hassoldt. Come and talk discuss with your fellow scientists and teachers what we can do and who to turn to. This meeting is part of a series of meetings that DEWIS is organizing at every faculty. After the faculty of Architecture, Civil Engineering and Geosciences, Mechanical Engineering and Applied Sciences, Technology, Policy and Management is the fifth faculty. Event information Who : All scientific staff from the faculty Technology, Policy and Management (TPM) Where : 31 Technology, Policy and Management, Hall A When : 19 March, 12:30 – 13.30 Lunch is included Registration https://edu.nl/89468 We would love to hear your experiences, suggestions, comments or wishes as an academic and/or teacher working at the faculty of TPM. What can we learn from your experience? How can we use your experience for better policymaking? We want to encourage you to speak your mind to foster conversation in benefit of equal opportunities and an inclusive and safe environment. Many stories matter. Stories have been used to dispossess and to malign. But stories can also be used to empower, and to humanize. Stories can break the dignity of a people. But stories can also repair that broken dignity. Chimamanda Ngozi Adichie

Laurens Valk

Faculty of Mechanical, Maritime and Materials Engineering Laurens obtained his master’s double degree in Mechanical Engineering and in Systems & Control. He chose to conduct research in the area of control theory. Control theory deals with the behaviour of dynamical systems, aiming to develop methods to better understand and control these systems. Laurens generalized, improved and extended an energy-based control concept in the area of so-called passivity-based control. His innovative method enables distributed control design for a large class of applications, such as human‐machine and human‐swarm interaction. For example, using his approach, human operators can cooperate with and control the behaviour of entire swarms in a simple-to-use, intuitive, and safe way, even if the different individual dynamical systems that form the swarm (e.g. flexible robot arms, unmanned aerial vehicles, etc.) would be difficult to control directly by a human operator. Given the outstanding quality of the work and the high potential impact for applications, Laurens already got two papers published. His thesis was rewarded with the highest grade possible (10). On top of his academic excellence, Laurens is also a successful book author. His handbook on Lego Mindstorms is very popular, according to the Amazon Best Sellers Rank the #1 in Children’s Books, Computers & Technology, Hardware & Robotics. “It is impressive how much Laurens has learned about a highly challenging field in a very short time. The success in and dedication to accessible knowledge dissemination demonstrate both his didactic talent and his unpretentious nature.” Graduation committee – Prof. Heike Vallery, Dr Tamas Keviczky Thesis synopsis The research field of distributed control studies networks of interconnected systems, such as water networks or autonomous vehicle networks. In robotics, distributed control is about making multiple robots cooperate, such as to collaboratively lift and transport an object. In practice, many conventional control techniques are not directly applicable to robots with a limited number of actuators, also known as underactuated systems. This thesis presents techniques to enable stable distributed control of underactuated systems. Relying on a principle similar to the conservation of energy, we show that it is possible to stabilize individual underactuated systems, while simultaneously achieving a group objective such as driving or flying in a prescribed formation. The proposed technique is constructive, allowing a wide range of previously found solutions for individual robots to be used in a distributed control framework. The results have applications in industrial robotics as well as in safe human-robot interaction.

Anne van Lieren

Faculty of Industrial Design Engineering Anne completed her master’s degree in Strategic Product Design. For her thesis, she focussed on the concept of nudging, a psychological construct that proposes positive reinforcement and indirect suggestions as ways to influence the behaviour of individuals. In her thesis, Anne summarized and classified the majority of more than a hundred known nudging techniques. She executed seven case studies with service designers and their clients to analyse the value of different nudging techniques in a service design process. She developed the new and inspiring concept of rational overrides: micro moments of friction that can be used to disrupt mindless automatic reactions, prompt moments of reflection, and ultimately change behaviour. Anne used this concept to develop a theoretical framework and toolkit. The theoretical framework has been further developed in a research paper that Anne presented at a major international conference on design research. Furthermore, Anne managed to design a real usable service design toolkit, which was tested with real clients and proved to be a very usable solution to help designers in developing meaningful and positive behavioural change. She received an impressive 9.5 for her thesis “Anne took great care to communicate her work in a highly understandable and engaging (visual) language. An additional proof that she is a real designer.” Graduation committee - Prof. J.P.L. Schoormans, Dr G. Calabretta, Lavans Løvlie Thesis synopsis Organisations are increasingly keen to influence behaviour; from banks that urge people to save for future income to healthcare organisations that encourage healthier lifestyles. These organizations, and the designers that they hire to do the job, are struggling to change behaviour since it is complex, dynamic and very often not rational. In this graduation project, knowledge from behavioural sciences was incorporate in the service design practice. The research demonstrated that, next to the well-known nudging approach, micro moments of friction are crucial to changing behaviour. Moments of friction, also referred to as rational overrides, cause people to pause and notice what they’re doing automatically – and so enable them to make a more conscious decision. An alternative design approach and service design toolkit was created to enable designers and organizations to benefit from an enhanced ability to understand, predict and influence customer behaviour.

Jacopo Zamboni

Faculty of Aeropace Engineering Jacopo obtained his master’s degree in Aerospace Engineering. For his thesis he developed a method for the conceptual design of hybrid electric aircraft. Society demands future aircraft to be more fuel-efficient to limit their negative impact on our climate and still warrant a sustainable growth of the aviation industry. Jacopo developed a design methodology based on fundamental theories of flight, electrical engineering, and aircraft design. He demonstrated the versatility of his method by designing various future aircraft relying on different hybrid-electric architectures. By performing a thorough validation of each of the subcomponents of the methodology, he convinced the graduation committee of the validity of his results. Furthermore, Jacopo outlined three distinctive paths forward for hybrid-electric propulsion, with overall reductions in energy consumption ranging between 6% and 35% for the most conservative and most progressive technology assumptions, respectively. Jacopo received a 9 for his thesis and will present the contents of his work on the international AIAA SCITECH conference. “Jacopo is an excellent student with a deep passion for aviation and aircraft design in particular. His thesis is original, scientifically sound and very relevant with respect to developments within society” Graduation committee – Dr R. Vos, Prof. L. L. M. Veldhuis, P. C. Roling MSc, R. de Vries MSc Thesis synposis As the aviation sector keeps expanding, a growing interest in technologies that can reduce the dependency from non-renewable energy sources, both for economic and environmental reasons, has led researchers to investigate the opportunities offered by the electrification of flight. However, fully electric designs are not viable in the foreseeable future, as the performance characteristics of the electric devices are still not comparable with the achievements of fuel-burning propulsive systems. A proposed solution is to electrify only a fraction of the aircraft system while the technology maturity level is still advancing. The use of two energy sources opens the design space and allows for the experimentation with novel aircraft configurations that could lead to interesting energy consumption reductions. However, established methods for aircraft design become obsolete as the required complex configurations and control strategies cannot be modelled. Therefore, the objective of this project was the development of a conceptual design procedure that can be applied to size and analyse any hybrid electric architecture that remains simple enough to be usable at the start of the design.

Guillermo Ortiz Jiménez

Faculty of Electrical Engineering, Mathematics & Computer Science Guillermo obtained his master’s degree in Electrical Engineering. He chose a graduation project in the field of signal processing. He first dived into the topic of deep learning, a machine learning technique that teaches computers to learn by example. He examined whether he could extend classical deep learning techniques, meant to classify audio signals or images, to techniques useful for classifying signals supported by an irregular structure. Such learning methods can be used to classify complicated non-structured data such as measurements from body sensors. Guillermo managed to quickly develop a graph-convolutional deep network structure, which successfully classified the irregular signals. Guillermo also tackled the topic of sparse sensing, a technique to reduce the number of sensors in a sensing system. He established a complete sparse sensing framework. His work can, for example, help movie recommender systems (such as Netflix) to pick movies and users in a clever way to predict all preferences. Guillermo is the first to introduce such a framework and his work is truly ground-breaking. A conference paper has already been accepted for one of the main conferences of the IEEE Signal Processing Society. His thesis was rewarded with the highest possible grade (10). “With Guillermo you can always have very mature discussions and brainstorming sessions with interesting outcomes. He is one of the best MSc students I ever met.” Graduation committee - Prof. GJ.T. Leus, Dr S.P. Chepuri, Dr R. Hendriks, Dr D. Tax Thesis synposis In this new era of data science, Machine Learning (ML) and Signal Processing (SP) are becoming the key driving forces of the fourth industrial revolution. They are paving the way for the genesis of new disruptive applications across many fields, ranging from the biomedical sciences to the ICT and manufacturing industries. Most of the tools in ML and SP, however, can only be applied to signals residing on a regular grid, e.g. audio and image signals. In my thesis, hence, I extended these tools to signals that lie on irregular domains with a graph structure, e.g. traffic networks, 3D meshes, or social network graphs. In particular, I developed two mathematical frameworks: one for the classification of graph signals using tools from deep learning and one for their sampling. The applications of my thesis are diverse varying from brain signal decoding (classification) to the automatic recommendation of items in e-commerce (sampling).

Eleni Chronopoulou

Faculty of Architecture and the Built Environment Eleni completed her master’s degree Architecture, Urbanism and Building Science in the summer of 2018. Her thesis explores how landscape architecture has the capacity to work as an integrative common ground, bringing together conflicting notions such as natural and engineered, formal and informal, concept and reality, process and form, the designed landscape and the practices of everyday life. Eleni researched the landscape of Kifissos, a heavily abused river area in Athens, Greece. This area has become part of the city’s infrastructural network, functioning as a highway and a sewage collector. The once natural dynamic river banks are now replaced with strict concrete boundaries, expressing a conceived necessity to dominate nature. Eleni describes the case of Kifissos as oppositions of uncontrolled dynamic natural processes and an over-controlled landscape. The oppositions are addressed in her graduation work through an alternative reading of the existing landscape sustained by theory, in search for latent conditions of coexistence. Extracted from their habitual settings, Eleni translated these conditions into design concepts. This combination has resulted in a flexible landscape architectural framework that integrates social, environmental, and technical aspects. Her thesis was rewarded with the highest possible grade (10). “Eleni’s thesis is an outstanding contribution to the discipline of landscape architecture, combining theory and design in a clever innovative way.” Graduation committee – Dr Inge Bobbink, Dr Esther Gramsbergen, Alexander de Ridder MSc Thesis synopsis Kifissos is an abused urban river in Athens: a heavily polluted landscape suffering from deadly flood events that have been escalating together with the city’s growth. The river’s containment within concrete boundaries reflects a conceived necessity to over-control unpredictable natural dynamics, reflecting an opposition between man and nature. Furthermore, the unnegotiable linearity of the river results in one more division: between rich, formally designed neighbourhoods and poor districts which have grown informally, outside the control of urban plans. To address these oppositions, the design starts from an excavation on the existing site, investigating the common grounds between conflicting notions: between natural and engineered, formal and informal, the designed landscape and the practices of everyday life. The extracted conditions of coexistence are translated into design tools able to incorporate social, environmental, and technical aspects closely related to the realities of the existing milieu.

Half Height Horizontal

New LDE trainee in D&I office

Keehan Akbari has started since the beginning of September as a new LDE trainee in the Diversity and Inclusion office. What motivated him to work for the D&I office, what does he expect to achieve during this traineeship? Read the short interview below! What motivated you to pursue your LDE traineeship in Diversity and Inclusion office of the TU Delft? I completed both bachelor's and master's degrees in Cultural Anthropology and Development Sociology at Leiden University. Within these studies, my main area of interest was in themes of inclusion and diversity. After being hired as a trainee for the LDE traineeship, and discovering that one of the possible assignments belonged to the Diversity and Inclusion office, my choice was quickly made. I saw this as an excellent opportunity to put the theories I learned during my studies into practice. What specific skills or experiences do you bring to the D&I office that will help promote inclusivity on campus? I am someone who likes to connect rather than polarize, taking into account the importance of different perspectives and stakeholders. I believe that this is how one can achieve the most in fostering diversity and inclusion. You need to get multiple parties on board to get the best results. What are your main goals as you begin your role here, and how do you hope to make an impact? An important goal for me this year is to get students more involved in diversity and inclusion at the university. One way I will try to accomplish this is by contributing to the creation of D&I student teams. By establishing a D&I student team for faculties, it will be possible to deal with diversity- and inclusion-related issues that apply and relate to the specific department. How do you plan to engage with different (student) communities within the university? Since I am new to TU Delft, the first thing I need to do is expand my network here. Therefore, I am currently busy exploring the university and getting to know various stakeholders. Moreover, I intend to be in close contact with various student and study organizations to explore together how to strengthen cooperation on diversity and inclusion. Welcome to the team Keehan and we wish you lots of success with your traineeship!

Researchers from TU Delft and Cambridge University collaborate on innovative methods to combat Climate Change

For over a year and a half, researchers from TU Delft and the Cambridge University Centre for Climate Repair have worked together on groundbreaking techniques to increase the reflectivity of clouds in the fight against global warming. During a two-day meeting, the teams are discussing their progress. Researchers at Cambridge are focusing on the technical development of a system that can spray seawater, releasing tiny salt crystals into the atmosphere to brighten the clouds. The team from TU Delft, led by Prof. Dr. Ir. Herman Russchenberg, scientific director of the TU Delft Climate Action Program and professor of Atmospheric Remote Sensing, is studying the physical effects of this technique. Prof. Russchenberg emphasizes the importance of this research: "We have now taken the first steps towards developing emergency measures against climate change. If it proves necessary, we must be prepared to implement these techniques. Ideally, we wouldn't need to use them, but it's important to investigate how they work now." Prof. Dr. Ir. Stefan Aarninkhof, dean of the Faculty of Civil Engineering and Geosciences, expresses pride in the team as the first results of this unique collaboration are becoming visible. If the researchers in Delft and Cambridge can demonstrate the potential of the concept, the first small-scale experiments will responsibly begin within a year. This research has been made possible thanks to the long-term support from the Refreeze the Arctic Foundation, founded by family of TU Delft alumnus Marc Salzer Levi . Such generous contributions enable innovative and high-impact research that addresses urgent global challenges like climate change. Large donations like these enable the pursuit of innovative, high-impact research that may not otherwise be feasible, demonstrating how our collective effort and investment in science can lead to real, transformative solutions for global challenges like climate change. Climate-Action Programme

How system safety can make Machine Learning systems safer in the public sector

Machine Learning (ML), a form of AI where patterns are discovered in large amounts of data, can be very useful. It is increasingly used, for example, in chatbot Chat GPT, facial recognition, or speech software. However, there are also concerns about the use of ML systems in the public sector. How do you prevent the system from, for example, discriminating or making large-scale mistakes with negative effects on citizens? Scientists at TU Delft, including Jeroen Delfos, investigated how lessons from system safety can contribute to making ML systems safer in the public sector. “Policymakers are busy devising measures to counter the negative effects of ML. Our research shows that they can rely much more on existing concepts and theories that have already proven their value in other sectors,” says Jeroen Delfos. Jeroen Delfos Learning from other sectors In their research, the scientists used concepts from system safety and systems theory to describe the challenges of using ML systems in the public sector. Delfos: “Concepts and tools from the system safety literature are already widely used to support safety in sectors such as aviation, for example by analysing accidents with system safety methods. However, this is not yet common practice in the field of AI and ML. By applying a system-theoretical perspective, we view safety not only as a result of how the technology works, but as the result of a complex set of technical, social, and organisational factors.” The researchers interviewed professionals from the public sector to see which factors are recognized and which are still underexposed. Bias There is room for improvement to make ML systems in the public sector safer. For example, bias in data is still often seen as a technical problem, while the origin of that bias may lie far outside the technical system. Delfos: “Consider, for instance, the registration of crime. In neighbourhoods where the police patrol more frequently, logically, more crime is recorded, which leads to these areas being overrepresented in crime statistics. An ML system trained to discover patterns in these statistics will replicate or even reinforce this bias. However, the problem lies in the method of recording, not in the ML system itself.” Reducing risks According to the researchers, policymakers and civil servants involved in the development of ML systems would do well to incorporate system safety concepts. For example, it is advisable to identify in advance what kinds of accidents one wants to prevent when designing an ML system. Another lesson from system safety, for instance in aviation, is that systems tend to become more risky over time in practice, because safety becomes subordinate to efficiency as long as no accidents occur. “It is therefore important that safety remains a recurring topic in evaluations and that safety requirements are enforced,” says Delfos. Read the research paper .