ImPhys
Imaging Physics The department of Imaging Physics develops novel instrumentation and imaging technologies. We are driven by our scientific curiosity and problem oriented nature in research with a strong connection to industry and to educate future leaders in the field of imaging science. The scientific staff of the department is formed by independent Principal Investigators or Educators. News More news Socials This content is being blocked for you because it contains cookies. Would you like to view this content? By clicking here , you will automatically allow the use of cookies. In the spotlight Measuring brain activity through the skull with ultrasound opens new doors Ultrasound technology has the potential to accurately, cheaply, and above all, quickly visualize brain activity. This could open doors for new brain research, such as studying the interaction between brain regions. For now, however, there is a significant obstacle: the skull. The bone of the skull affects sound waves, which significantly deteriorates image quality. Rick Waasdorp, a PhD candidate within the Medical Delta UltraHB: Ultrafast ultrasound for the heart and brain, is looking for ways to correct the distortion caused by the skull. Read more Nieuw zicht op vervlochten zenuwvezels De hersenen bevatten miljoenen zenuwvezels die dicht op elkaar gepakt zijn, waardoor het lastig is om de vezels van elkaar te onderscheiden met microscopische technieken. Miriam Menzel ontwikkelde een eenvoudige lichtmicroscopietechniek die de oriëntatie van deze vezels in beeld kan brengen. Read more Pushing boundaries to inspect increasingly small computer chips There is a growing demand for smaller and more powerful computer chips. A major challenge to meet this demand is that when components are extremely small, it is hard to make them visible and inspect with light. By using electrons instead of light, the highest possible resolution can be achieved for visualising semiconductor components. Inspection with electrons offers a solution, but the technique still has major, fundamental shortcomings. Get on board: join this research collaboration between ARCNL, TU Delft and ASML -> PhD & Postdoc positions Read more Advanced microscopy to understand life and fight disease In the NL-BI consortium, scientists from all Dutch academic research centres will together develop and integrate state-of-the-art microscopy with technologies and services in different nodes. This will enable access for all scientists to revolutionise fundamental insights into the building blocks of life, enable scientific breakthroughs, and advance applications towards society for overcoming life-threatening disease, including cancer, metabolic, cardiovascular, and neurodegenerative disorders. Read more Pushing the boundaries of ultrasound Physicist David Maresca has received a Chan Zuckerberg Initiative Dynamic Imaging grant to develop a next-generation medical ultrasound tool. While state-of-the-art ultrasound imaging, known to most as a baby’s first picture, can show our anatomy and organs, the new tool will be able to zoom in much further, all the way down to the level of the cells in our body. Maresca: “Ultrasound is a safe but also affordable and widespread technology. If we can push the boundaries and make it more sensitive, it will potentially help a lot of people.” Read more Microscope shows researchers the way to proteins Physicists from TU Delft, Daan Boltje and Jacob Hoogenboom have developed a 3-in-1 microscope where a light beam, electron beam and ion beam work together to precisely cut out specific slices from biological samples. These slices are indispensable for biomolecular research into new generations of medicines. Read more Spying on microscopic blood vessels in the heart and brain Sebastian Weingärtner will use Magnetic Resonance Imaging (MRI) to exploit hydrogen atoms as microscopic spies to investigate the smallest blood vessels in the body. These ultra-small blood vessels are so fine that they evaded medical imaging so far, yet a better understanding of their features could be a transformative step towards better treatment of diseases like heart failure and dementia. Read more From light spots to supersharp images Making detailed 3D images of proteins in living cells with a special light microscope, without damaging those cells. That is what Sjoerd Stallinga, winner of an ERC Advanced grant worth 2.3 million euros, wants to achieve. In order to do so he is going to scan samples nanometer by nanometer using a sophisticated 3D light pattern in an approach that requires extensive collaboration between different disciplines. Read more Spotlight on aggressive cancer cells Metastases in cancer are often caused by a few abnormal cells. These behave more aggressively than the other cancer cells in a tumour. Miao-Ping Chien and Daan Brinks are working together, from two different universities, on a method to detect these cells. Their research has now been published in Nature Biomedical Engineering Read more How to find structurally different molecules before they disappear in the average? Particle fusion for single molecule localization microscopy improves signal-to-noise ratio and overcomes underlabeling, but ignores structural heterogeneity or conformational variability. This study presents a-priori knowledge-free unsupervised classification of structurally different particles employing the Bhattacharya cost function as dissimilarity metric. Read more The impact of noise on Structured Illumination Microscopy image reconstructions Super-resolution structured illumination microscopy (SIM) has become a widely used method for biological imaging. Standard reconstruction algorithms, however, are prone to generate noise-specific artifacts that limit their applicability for lower signal-to-noise data. Here we present a physically realistic noise model that explains the structured noise artifact, which we then use to motivate new complementary reconstruction approaches. Read more A new tool to understand the brain How does our brain work? An international team of researchers, including lead author Daan Brinks of TU Delft, has taken another step towards answering that question. They have created a new tool that allows them to image electrical signals in brains with an unprecedented combination of precision, resolution, sensitivity, and depth. Read more Researchers make 3D image with light microscope For the first time, Delft researchers have succeeded in making a three-dimensional image of a cellular component using light. The component in question is the nuclear pore complex: tunnels that facilitate traffic to and from the cell nucleus. Studying cell components in 3D can help to determine the cause of various diseases, among other things. The researchers have published their findings in Nature Communications. Read more Decoding movement intentions in the brain using ultrasound waves While many techniques can image brain activity, this was the first time that a new technology, called functional ultrasound imaging, was used to detect motor planning deep within the brain. The team is now applying functional ultrasound decoding to more complicated motor control tasks. At ImPhys, Dr. Maresca is developing ultrasound technologies to image brain activity down to the cellular scale. Read more