Filter results

48111 results

The next phase in aircraft design

The aircraft design of the Flying-V is potentially much more efficient than the traditional “pipe with wings” design. The concept was received with great enthusiasm, but a lot of hard work will need to be done if the sustainable flying wing is to be ready by 2040. I n June 2019, TU Delft and KLM presented their plans for the Flying-V: an aircraft designed to save 20% on both fuel and emissions due to its unique shape. KLM is sponsoring the project for sustainable flying as part of its 100th anniversary programme. During celebrations to mark the event last October, the scale model and the mock-up of the interior of the Flying-V attracted huge interest, and the story was covered by numerous media, from Dutch Design Week to the DWDD talk show. “Something we had been working on for years was suddenly in the spotlight”, explains Roelof Vos, project leader of Flying-V and Assistant Professor of flight performance and propulsion. Checking the calculations A patent that appeared in the media first drew Vos’s attention in 2014. Graduate Justus Benad from TU Berlin had come up with a draft design for Airbus, for a flying wing with seating for 300 passengers. “Most new aircraft concepts aren’t radically different from current designs. This one intrigued me”, says Vos. “It promised a staggering 10% improvement in aerodynamic efficiency and a 2% reduction in take-off weight compared with a conventional aircraft. My immediate reaction was: as critical researchers, we have to check these claims thoroughly.” Vos also thought that he could improve the draft design: “We gave it an oval fuselage instead of a round pipe, and it became the Delft Flying-V.” The aerodynamics research based on this version improved the results even further than the original promising 10%. The prognosis for a lower take-off weight also turned out to be correct, although this was difficult to calculate for an aircraft that was still only a design on paper. “After consulting with experts from Airbus, we concluded that whatever else, the aircraft would not become heavier. Our claim is that the unladen weight will be 7% lower, but the total weight will depend on the interior and all the systems.” Construction weight The lower weight is largely due to the unique shape of the aircraft: “Passengers normally sit in the middle of the plane and the wings generate the lift; this force must then be transferred to the cabin. This requires extra construction weight, which is no longer needed in our design.” This is nothing new; it’s one of the ideas behind aircraft such as the Blended Wing Body planes (BWB), in which the wings, cabin and engines are designed as a single unit. “But the Blended Wing Body design is not attractive from an industrial perspective, as every aircraft needs to be designed individually, whereas the Flying V is easy to lengthen or shorten so you can build series of aircraft using 95% of the same parts”, explains Vos. Test model Work is currently underway in the Aeroplane Hall of the Faculty of Aerospace Engineering to construct a scale model of the Flying-V with a wingspan of three metres. Researcher Malcom Brown is heading the project. His students are closely involved, as they are with other parts of the project. “It’s great to see how much students learn from doing something practical like building a model that actually works”, says Brown. “Some of them aren’t as practical as others when it comes to things like drilling or filing, but that’s just as much part of the learning process. The model will be used for actual research flights, so we have to be as accurate as possible.” Measurement arm A 3D measurement arm with laser scanner was purchased specially for the job. “The measurement arm allows us to determine the precise shape and location of components to a tenth of a millimetre. In this way, we can check whether all the parts we have ordered satisfy our requirements and are positioned correctly”, explains Brown. Despite all this accuracy, building a test model is a nerve-racking business, right up to the last moment. “Real life is never the same as the calculations, so we won’t know whether the aircraft can really fly, or the flight characteristics, until the test flights. Wind tunnel tests, for example, have shown that the aircraft might be less stable at a certain high angle. This didn’t show up in the computer simulations”, he continues. “Scaling up wind tunnel measurements to life-size test models is always a huge challenge in aerospace engineering.” A doctoral candidate is currently looking into ways of improving the theory behind this scaling up process; the research will be of use to other projects too. Interior Professor of Environmental Ergonomics Peter Vink, who is working on the plane’s interior, isn’t troubled by the scaling-up problems. Part of the interior has been built to true size and is currently on display in the Faculty of Industrial Design Engineering. “We are using the project as an opportunity to improve comfort for passengers”, he says. Four winning ideas were chosen from a design competition for students. They related to beds, lounge seats, group seating and individual seats. The beds make it possible for economy-class passengers to sleep horizontally, according to Vink: “We place three beds one above another, whereby the middle bunk can be slid up allowing the bottom bunk to be used for seating during take-off and landing. This is necessary to provide fast escape routes in the event of evacuation. You don’t lose any seating, because three beds take up just as much space as three seats”, he explains. In the group seating, passengers sit opposite each other like they do on trains. “More than a quarter of all passengers fly in groups. Sitting opposite each other makes it easier to chat or play games with the children”, continues Vink. “The lounge seats allow you to sit in different positions, from chill to working with a laptop. It is important to change your position regularly, and with this seat, your position is determined by what you are doing.” The individual seats are not directly next to each other, but alternate and are mounted at an angle of 26 degrees to the aircraft’s flight direction. This is a safety regulation. “Sitting at too wide an angle to the plane’s flightpath is less safe if the plane crashes”, he explains. “But there’s another advantage to this arrangement: you have more leg and shoulder room.” Boarding and disembarking in these spots is also made easier because you can flip over the seat cushion. “You can also use the folded seat position if you want to sit a bit higher”, says Vink. Sustainability Sustainability was also taken into account in the interior design. “Interior constitutes weight, and the heavier the plane is, the more fuel you need. The seats we’ve designed are three to five kilos lighter than the current models. In the rest of the interior, we’ve tried to use as much openwork as possible, rather than solid structures, using generative design methods. This saves material and therefore weight.” Many of these ideas could be used in regular aircraft, but there are still some unanswered questions about the interior of the Flying-V. “For example, our plans don’t leave enough room for hand luggage”, says Vink. “Then again, we have until 2040 to think about it.” Still so much to do The media attention may have quietened down, but work behind the scenes is still in full swing. “This was an integrated project from the word go; all disciplines are involved. You don’t want to complete a fantastic aerodynamic design, only to discover that the finished product is far too heavy”, explains Vos. “So we recently met experts from across the sector to discuss the challenges they envisaged. We ended up with a list of almost 50 subjects that need further scrutiny.” They varied from highly practical to totally theoretical. “This new aircraft must be capable of landing and being serviced at existing airports. Imagine if you have to change an engine and they’re fitted on top of the wings. You can get to them using a crane at Schiphol, but what about at other airports in the world?” And there are more conceptual questions about the dynamic stability of the design. “You need to know precisely how the mass is distributed and how the aerodynamics change at different speeds”, says Vos. “We can measure some of this during the test flights, but a small test model doesn’t fly fast enough to be able to draw any definite conclusions. We can try to estimate it using existing methods, but these were designed for the existing models. So in order to do this, we need to come up with a clever way of combining the results of various tests and analyses.” Next phase All three of them agree about the need for a new configuration. “You can’t just carry on using the current solutions”, claims Vink. “Existing configurations only allow incremental, minor improvements”, adds Vos. “This may well be the first step in the next phase of aviation”, says Brown. “The sector knows that it needs to modernise. Not only for economic reasons because fuel is currently the biggest expense for aviation companies, but also because of the increasingly strict emissions policies.” So will we be flying in a Flying-V in 2040? “Airbus, Schiphol, KLM and other parties are already very enthusiastic. We’ll form a consortium next year, so that we can work more intensively on developing the design with all of these parties”, explains Vos. But the researcher is still erring on the side of caution. “There’s still so much that we don’t know about this aircraft; in another five years, we might even come to the conclusion that it’s not feasible after all.” Existing configurations only allow incremental, minor improvements Read more stories of Aerospace Engineering Roelof Vos, Malcom Brown, Peter Vink This is a Portrait of Science from Aerospace Engineering I n June 2019, TU Delft and KLM presented their plans for the Flying-V: an aircraft designed to save 20% on both fuel and emissions due to its unique shape. KLM is sponsoring the project for sustainable flying as part of its 100th anniversary programme. During celebrations to mark the event last October, the scale model and the mock-up of the interior of the Flying-V attracted huge interest, and the story was covered by numerous media, from Dutch Design Week to the DWDD talk show. “Something we had been working on for years was suddenly in the spotlight”, explains Roelof Vos, project leader of Flying-V and Assistant Professor of flight performance and propulsion. Checking the calculations A patent that appeared in the media first drew Vos’s attention in 2014. Graduate Justus Benad from TU Berlin had come up with a draft design for Airbus, for a flying wing with seating for 300 passengers. “Most new aircraft concepts aren’t radically different from current designs. This one intrigued me”, says Vos. “It promised a staggering 10% improvement in aerodynamic efficiency and a 2% reduction in take-off weight compared with a conventional aircraft. My immediate reaction was: as critical researchers, we have to check these claims thoroughly.” Vos also thought that he could improve the draft design: “We gave it an oval fuselage instead of a round pipe, and it became the Delft Flying-V.” The aerodynamics research based on this version improved the results even further than the original promising 10%. The prognosis for a lower take-off weight also turned out to be correct, although this was difficult to calculate for an aircraft that was still only a design on paper. “After consulting with experts from Airbus, we concluded that whatever else, the aircraft would not become heavier. Our claim is that the unladen weight will be 7% lower, but the total weight will depend on the interior and all the systems.” Construction weight The lower weight is largely due to the unique shape of the aircraft: “Passengers normally sit in the middle of the plane and the wings generate the lift; this force must then be transferred to the cabin. This requires extra construction weight, which is no longer needed in our design.” This is nothing new; it’s one of the ideas behind aircraft such as the Blended Wing Body planes (BWB), in which the wings, cabin and engines are designed as a single unit. “But the Blended Wing Body design is not attractive from an industrial perspective, as every aircraft needs to be designed individually, whereas the Flying V is easy to lengthen or shorten so you can build series of aircraft using 95% of the same parts”, explains Vos. Test model Work is currently underway in the Aeroplane Hall of the Faculty of Aerospace Engineering to construct a scale model of the Flying-V with a wingspan of three metres. Researcher Malcom Brown is heading the project. His students are closely involved, as they are with other parts of the project. “It’s great to see how much students learn from doing something practical like building a model that actually works”, says Brown. “Some of them aren’t as practical as others when it comes to things like drilling or filing, but that’s just as much part of the learning process. The model will be used for actual research flights, so we have to be as accurate as possible.” Measurement arm A 3D measurement arm with laser scanner was purchased specially for the job. “The measurement arm allows us to determine the precise shape and location of components to a tenth of a millimetre. In this way, we can check whether all the parts we have ordered satisfy our requirements and are positioned correctly”, explains Brown. Despite all this accuracy, building a test model is a nerve-racking business, right up to the last moment. “Real life is never the same as the calculations, so we won’t know whether the aircraft can really fly, or the flight characteristics, until the test flights. Wind tunnel tests, for example, have shown that the aircraft might be less stable at a certain high angle. This didn’t show up in the computer simulations”, he continues. “Scaling up wind tunnel measurements to life-size test models is always a huge challenge in aerospace engineering.” A doctoral candidate is currently looking into ways of improving the theory behind this scaling up process; the research will be of use to other projects too. Interior Professor of Environmental Ergonomics Peter Vink, who is working on the plane’s interior, isn’t troubled by the scaling-up problems. Part of the interior has been built to true size and is currently on display in the Faculty of Industrial Design Engineering. “We are using the project as an opportunity to improve comfort for passengers”, he says. Four winning ideas were chosen from a design competition for students. They related to beds, lounge seats, group seating and individual seats. The beds make it possible for economy-class passengers to sleep horizontally, according to Vink: “We place three beds one above another, whereby the middle bunk can be slid up allowing the bottom bunk to be used for seating during take-off and landing. This is necessary to provide fast escape routes in the event of evacuation. You don’t lose any seating, because three beds take up just as much space as three seats”, he explains. In the group seating, passengers sit opposite each other like they do on trains. “More than a quarter of all passengers fly in groups. Sitting opposite each other makes it easier to chat or play games with the children”, continues Vink. “The lounge seats allow you to sit in different positions, from chill to working with a laptop. It is important to change your position regularly, and with this seat, your position is determined by what you are doing.” The individual seats are not directly next to each other, but alternate and are mounted at an angle of 26 degrees to the aircraft’s flight direction. This is a safety regulation. “Sitting at too wide an angle to the plane’s flightpath is less safe if the plane crashes”, he explains. “But there’s another advantage to this arrangement: you have more leg and shoulder room.” Boarding and disembarking in these spots is also made easier because you can flip over the seat cushion. “You can also use the folded seat position if you want to sit a bit higher”, says Vink. Sustainability Sustainability was also taken into account in the interior design. “Interior constitutes weight, and the heavier the plane is, the more fuel you need. The seats we’ve designed are three to five kilos lighter than the current models. In the rest of the interior, we’ve tried to use as much openwork as possible, rather than solid structures, using generative design methods. This saves material and therefore weight.” Many of these ideas could be used in regular aircraft, but there are still some unanswered questions about the interior of the Flying-V. “For example, our plans don’t leave enough room for hand luggage”, says Vink. “Then again, we have until 2040 to think about it.” Still so much to do The media attention may have quietened down, but work behind the scenes is still in full swing. “This was an integrated project from the word go; all disciplines are involved. You don’t want to complete a fantastic aerodynamic design, only to discover that the finished product is far too heavy”, explains Vos. “So we recently met experts from across the sector to discuss the challenges they envisaged. We ended up with a list of almost 50 subjects that need further scrutiny.” They varied from highly practical to totally theoretical. “This new aircraft must be capable of landing and being serviced at existing airports. Imagine if you have to change an engine and they’re fitted on top of the wings. You can get to them using a crane at Schiphol, but what about at other airports in the world?” And there are more conceptual questions about the dynamic stability of the design. “You need to know precisely how the mass is distributed and how the aerodynamics change at different speeds”, says Vos. “We can measure some of this during the test flights, but a small test model doesn’t fly fast enough to be able to draw any definite conclusions. We can try to estimate it using existing methods, but these were designed for the existing models. So in order to do this, we need to come up with a clever way of combining the results of various tests and analyses.” Next phase All three of them agree about the need for a new configuration. “You can’t just carry on using the current solutions”, claims Vink. “Existing configurations only allow incremental, minor improvements”, adds Vos. “This may well be the first step in the next phase of aviation”, says Brown. “The sector knows that it needs to modernise. Not only for economic reasons because fuel is currently the biggest expense for aviation companies, but also because of the increasingly strict emissions policies.” So will we be flying in a Flying-V in 2040? “Airbus, Schiphol, KLM and other parties are already very enthusiastic. We’ll form a consortium next year, so that we can work more intensively on developing the design with all of these parties”, explains Vos. But the researcher is still erring on the side of caution. “There’s still so much that we don’t know about this aircraft; in another five years, we might even come to the conclusion that it’s not feasible after all.” Existing configurations only allow incremental, minor improvements Roelof Vos, Malcom Brown, Peter Vink This is a Portrait of Science from Aerospace Engineering Other Portraits of Science Design for a better world The future of architectural glass

Bert van Wee is Professor of Excellence 2020

On Monday 31 August, Bert van Wee, Professor of Transport Policy at the Faculty of Technology, Policy and Management (TPM) is named Professor of Excellence 2020 by Delft University Fund. Van Wee receives this prestigious prize for the indelible mark he has left on the Delft, national and international transport communities. He displays a continuous drive to improve education, including his own. He is committed and critical, yet always positive and constructive in his supervision of graduate (198!) and PhD students (28). Professor van Wee has been nominated by prof. drs. Aukje Hassoldt, Dean of Faculty TPM, Study Association Curius, (current and former) PhD students and a large number of internal and external colleagues from the transport community, including organisations such as Oxford University, Ministry of Infrastructure and Water Management, Institute for Road Safety Research (SWOV) and TRAIL - Research School for Transport , Infrastructure and Logistics. Not only are his qualities as a researcher recognized, he is also highly praised for his positive attitude, unbridled enthusiasm, accessibility and unyielding dedication. Bert is one of the most cited TU Delft scientists in national and international media. Prof.dr.ir. Fred van Keulen, Chair selection committee Professor of Excellence “The selection committee was very impressed with the nomination. Bert van Wee has an extensive and comprehensive track record. Of special interest to the committee was how his role as coach and mentor has impacted so many others in the transport domain. The committee further recognized how Bert van Wee continues to have a positive impact on society at the national and international level.” Prof. drs. Aukje Hassoldt, Dean Faculty TPM “With a unique mix of research, educational and administrative qualities, Bert makes a unique scientific and social contribution to his field that is difficult to overestimate. With a broad palette of methodologies at his disposal, he has time and again developed new, integrated viewpoints that in turn inspire others. The faculty is privileged to have someone like Bert, with his high scientific caliber and engaging personality, as a key member of our community.” Thomas van Gerven, President Study Association Curius “Bert is a real educator. Within the transport domain of our faculty, he is truly a walking encyclopedia, constantly coming up with beautiful examples that appeal to the imagination. It is thanks to lecturers like Bert that more students are attracted to our faculty each year, allowing more students to experience the inspiring combination of technology and policy.” Best of TU Delft Delft University Fund has awarded the prestigious Professor of Excellence Award (in Dutch: Leermeesterprijs) since 1994. A Professor of Excellence is someone who excels in both research and education, and who knows how to inspire and motivate the next generation of Delft engineers. Recipients of the award are reckoned among the top of TU Delft. Professors of Excellence are not elected on the basis of yield figures or impact scores, nor are they selected top-down. You can only receive this honorary title on the recommendation of your colleagues and your students, who consider you to be their ‘Leermeester’. The prize The Professor of Excellence receives the silver Leermeester medal and a check for € 15,000. Also, KLM bestows two business class tickets for a destination of choice. The award ceremony Due to corona measures, the award ceremony will take place later. Bert van Wee Motorway speed limits of 100 km/h largely advantageous

Half Height Horizontal

A key solution to grid congestion

On behalf of the TU Delft PowerWeb Institute, researchers Kenneth Brunninx and Simon Tindemans are handing over a Position Paper to the Dutch Parliament on 14 November 2024, with a possible solution to the major grid capacity problems that are increasingly cropping up in the Netherlands. The Netherlands is unlikely to meet the 2030 climate targets, and one of the reasons for this is that large industry cannot switch to electricity fast enough, partly because of increasingly frequent problems around grid capacity and grid congestion. In all likelihood, those problems will actually increase this decade before they can decrease, the researchers argue. The solution offered by the TU Delft PowerWeb Institute researchers is the ‘flexible backstop’. With a flexible backstop, the current capacity of the power grid can be used more efficiently without sacrificing safety or reliability. A flexible backstop is a safety mechanism that automatically and quickly reduces the amount of electricity that an electric unit can draw from the grid (an electric charging station or a heat pump) or deliver (a PV installation). It is a small device connected or built into an electrical unit, such as a charging station or heat pump, that ‘communicates’ with the distribution network operator. In case of extreme stress on the network, the network operator sends a signal to the device to limit the amount of power. Germany recently introduced a similar system with electric charging stations. The backstop would be activated only in periods of acute congestion problems and could help prevent the last resort measure, which is cutting off electricity to users. ‘Upgrading the electricity network remains essential, but in practice it will take years. So there is a need for short-term solutions that can be integrated into long-term planning. We, the members of the TU Delft PowerWeb Institute, call on the government, network operators and regulator to explore the flexible backstop as an additional grid security measure,’ they said. The entire Paper can be read here . Kenneth Brunninx Associate Professor at the Faculty of Engineering, Governance and Management, where he uses quantitative models to evaluate energy policy and market design with the aim of reducing CO2 emissions. Simon Tindemans is Associate Professor in the Intelligent Electrical Power Grids group at Faculty of Electrical Engineering, Mathematics and Computer Science. His research interests include uncertainty and risk management for power grids. TU Delft PowerWeb Institute is a community of researchers who are investigating how to make renewable energy systems reliable, future proof and accessible to everyone.

25 year celebration of formal collaboration between Delft University of Technology and the University of Campinas

On 25 October 2024 we celebrated 25 years of formal collaboration between Delft University of Technology and the University of Campinas. What began as a project to exchange some students in chemical engineering has now grown to a multifaceted and broad academic collaboration which accumulated into 24 joint research projects (>20 M Euro); 16 advanced courses and 15 Doctors with a Dual Degree PhD. Patricia Osseweijer, TU Delft Ambassador Brazil explained, “We are proud to show and reflect on this special day the added value we created resulting from our joint activities. The lessons we learned demonstrate that especially continuity of funds and availability for exchanges has contributed to joint motivation and building trust which created strong relations. This is the foundation for academic creativity and high-level achievements.” The program presented showcases of Dual Degree projects; research activities and education. It discussed the future objectives and new fields of attention and agree on the next steps to maintain and strengthen the foundation of strong relations. Telma Franco, Professor UNICAMP shared that “joint education and research has substantially benefitted the students, we see that back in the jobs they landed in,” while UNICAMP’s Professor Gustavo Paim Valenca confirmed that “we are keen to extend our collaboration to more engineering disciplines to contribute jointly to global challenges” Luuk van der Wielen highlighted that “UNICAMP and TU Delft provide valuable complementary expertise as well as infrastructures to accelerate research and innovation. Especially our joint efforts in public private partnerships brings great assets” To ensure our future activities both University Boards have launched a unique joint program for international academic leadership. This unique 7-month program will accommodate 12 young professors, 6 from each university. The programme began on 4 November 2024 in Delft, The Netherlands.

Christmas lunch

Take part in a festive lunch with MoTiv, TU Delft Studentenraad en TU Delft ESA This holiday season, MoTiv, TU Delft, and the local Delft churches are bringing together homes and students for a special, heartwarming experience, and we would love for you to be part of it! After three successful years, we’re excited to continue this festive tradition, bridging cultures and creating connections. Are you interested in joining a holiday lunch as a guest , along with other international students, in a welcoming Delft-area home? Or perhaps you’d like to open your home as a host , sharing a warm, cultural celebration with students from around the world? This special event will take place from December 23rd to December 31st, between 12:00 and 15:00 . For Guests : If you’d like to participate as a guest, we’ll match you with a local host eager to share their holiday traditions. You’ll enjoy delicious dishes, laughter, and meaningful conversations, creating memories that feel like home, even far from family. Once matched, we’ll connect you with your host so you can coordinate details and meal plans together. Sign up as a guest in this google forms.(https://forms.gle/yLAqE83DcqWGwcKB8) For Hosts : If you’re interested in hosting, this is a wonderful opportunity to welcome students into your home for a memorable meal. By sharing food, stories, and perhaps even a few games, you’ll help make the season brighter for students eager to experience Dutch hospitality and holiday traditions. Sign up as a host in this google forms.( https://forms.gle/bJB5svxJZ1iTSF1c6 ) For any questions, feel free to reach out to us at motiv.connects@gmail.com. For more information, please visit our website at www.motiv.tudelft.nl/christmas-lunch-delft/ . Thank you for making this holiday season unforgettable. We look forward to celebrating with you! Warm regards, MoTiv, TU Delft Student Council, TU Delft ESA - Student Community Team