Filter results

48113 results

ImPhys

Imaging Physics The department of Imaging Physics develops novel instrumentation and imaging technologies. We are driven by our scientific curiosity and problem oriented nature in research with a strong connection to industry and to educate future leaders in the field of imaging science. The scientific staff of the department is formed by independent Principal Investigators or Educators. News More news Socials This content is being blocked for you because it contains cookies. Would you like to view this content? By clicking here , you will automatically allow the use of cookies. In the spotlight Measuring brain activity through the skull with ultrasound opens new doors Ultrasound technology has the potential to accurately, cheaply, and above all, quickly visualize brain activity. This could open doors for new brain research, such as studying the interaction between brain regions. For now, however, there is a significant obstacle: the skull. The bone of the skull affects sound waves, which significantly deteriorates image quality. Rick Waasdorp, a PhD candidate within the Medical Delta UltraHB: Ultrafast ultrasound for the heart and brain, is looking for ways to correct the distortion caused by the skull. Read more Nieuw zicht op vervlochten zenuwvezels De hersenen bevatten miljoenen zenuwvezels die dicht op elkaar gepakt zijn, waardoor het lastig is om de vezels van elkaar te onderscheiden met microscopische technieken. Miriam Menzel ontwikkelde een eenvoudige lichtmicroscopietechniek die de oriëntatie van deze vezels in beeld kan brengen. Read more Pushing boundaries to inspect increasingly small computer chips There is a growing demand for smaller and more powerful computer chips. A major challenge to meet this demand is that when components are extremely small, it is hard to make them visible and inspect with light. By using electrons instead of light, the highest possible resolution can be achieved for visualising semiconductor components. Inspection with electrons offers a solution, but the technique still has major, fundamental shortcomings. Get on board: join this research collaboration between ARCNL, TU Delft and ASML -> PhD & Postdoc positions Read more Advanced microscopy to understand life and fight disease In the NL-BI consortium, scientists from all Dutch academic research centres will together develop and integrate state-of-the-art microscopy with technologies and services in different nodes. This will enable access for all scientists to revolutionise fundamental insights into the building blocks of life, enable scientific breakthroughs, and advance applications towards society for overcoming life-threatening disease, including cancer, metabolic, cardiovascular, and neurodegenerative disorders. Read more Pushing the boundaries of ultrasound Physicist David Maresca has received a Chan Zuckerberg Initiative Dynamic Imaging grant to develop a next-generation medical ultrasound tool. While state-of-the-art ultrasound imaging, known to most as a baby’s first picture, can show our anatomy and organs, the new tool will be able to zoom in much further, all the way down to the level of the cells in our body. Maresca: “Ultrasound is a safe but also affordable and widespread technology. If we can push the boundaries and make it more sensitive, it will potentially help a lot of people.” Read more Microscope shows researchers the way to proteins Physicists from TU Delft, Daan Boltje and Jacob Hoogenboom have developed a 3-in-1 microscope where a light beam, electron beam and ion beam work together to precisely cut out specific slices from biological samples. These slices are indispensable for biomolecular research into new generations of medicines. Read more Spying on microscopic blood vessels in the heart and brain Sebastian Weingärtner will use Magnetic Resonance Imaging (MRI) to exploit hydrogen atoms as microscopic spies to investigate the smallest blood vessels in the body. These ultra-small blood vessels are so fine that they evaded medical imaging so far, yet a better understanding of their features could be a transformative step towards better treatment of diseases like heart failure and dementia. Read more From light spots to supersharp images Making detailed 3D images of proteins in living cells with a special light microscope, without damaging those cells. That is what Sjoerd Stallinga, winner of an ERC Advanced grant worth 2.3 million euros, wants to achieve. In order to do so he is going to scan samples nanometer by nanometer using a sophisticated 3D light pattern in an approach that requires extensive collaboration between different disciplines. Read more Spotlight on aggressive cancer cells Metastases in cancer are often caused by a few abnormal cells. These behave more aggressively than the other cancer cells in a tumour. Miao-Ping Chien and Daan Brinks are working together, from two different universities, on a method to detect these cells. Their research has now been published in Nature Biomedical Engineering Read more How to find structurally different molecules before they disappear in the average? Particle fusion for single molecule localization microscopy improves signal-to-noise ratio and overcomes underlabeling, but ignores structural heterogeneity or conformational variability. This study presents a-priori knowledge-free unsupervised classification of structurally different particles employing the Bhattacharya cost function as dissimilarity metric. Read more The impact of noise on Structured Illumination Microscopy image reconstructions Super-resolution structured illumination microscopy (SIM) has become a widely used method for biological imaging. Standard reconstruction algorithms, however, are prone to generate noise-specific artifacts that limit their applicability for lower signal-to-noise data. Here we present a physically realistic noise model that explains the structured noise artifact, which we then use to motivate new complementary reconstruction approaches. Read more A new tool to understand the brain How does our brain work? An international team of researchers, including lead author Daan Brinks of TU Delft, has taken another step towards answering that question. They have created a new tool that allows them to image electrical signals in brains with an unprecedented combination of precision, resolution, sensitivity, and depth. Read more Researchers make 3D image with light microscope For the first time, Delft researchers have succeeded in making a three-dimensional image of a cellular component using light. The component in question is the nuclear pore complex: tunnels that facilitate traffic to and from the cell nucleus. Studying cell components in 3D can help to determine the cause of various diseases, among other things. The researchers have published their findings in Nature Communications. Read more Decoding movement intentions in the brain using ultrasound waves While many techniques can image brain activity, this was the first time that a new technology, called functional ultrasound imaging, was used to detect motor planning deep within the brain. The team is now applying functional ultrasound decoding to more complicated motor control tasks. At ImPhys, Dr. Maresca is developing ultrasound technologies to image brain activity down to the cellular scale. Read more

Introduction Jasper Verschuur: New Team Member Climate Safety & Security Research Center

Welcome to Our New Assistant Professor: Jasper Verschuur We are thrilled to announce that Jasper Verschuur has joined our team as an Assistant Professor in Engineering Systems & Climate Security. Jasper will be playing a pivotal role within the Climate Safety & Security Research Center, within the Flagship 'Human Security and Liveable Environment.' “I joined the center as it offers a unique interdisciplinary environment to do research on some of the most pressing challenges that society faces in terms of rapidly decarbonising society, as well anticipating the adverse consequences of climate change. Moreover, the center provides a much-needed bridge to align TU Delft research with the needs of policymakers working on climate safety and security issues.” Research Focus and Objectives Jasper’s research addresses the systemic risks that climate change poses to infrastructure systems and the essential services they provide. This work spans both localized levels (e.g., household essential services) and a global scale (e.g., staple food flows). These systemic risks are complex and challenging to quantify due to the interdependencies between human, infrastructure, and economic systems. His research focuses on developing new modelling tools to better anticipate these risks and propose solutions to enhance resilience. This demands a forward-looking approach which not only tries to understand the various impacts of a changing climate, but also the evolving nature of the systems themselves, for instance due to the energy transition and rapid urbanization. This holistic perspective is crucial for devising effective strategies to mitigate systemic risks. Impact for a better society Aligned with TU Delft’s slogan, "Impact for a Better Society," Jasper's research aims to identify and address systemic risks that could lead to societal disruptions or economic losses. He focuses on ensuring that climate change does not exacerbate existing societal inequalities, particularly in the Global South, where these disparities are most pronounced. His work often includes a development angle, striving to assist those most vulnerable to climate risks. TU Delft’s mission in The Hague The mission of the TU Delft campus in The Hague is to bridge the gap and facilitate dialogue between engineering, sciences, and public policy. How can the newly established Climate Safety & Security Research Center contribute to this goal? “I see the research center as the central location to bring different people together and jointly discuss how the research center, and The Hague as a city, can make a difference in dealing with climate change.” In The Hague, there is a vibrant community of policymakers, think tanks, NGOs, and practitioners dedicated to safety and security issues. Climate change is increasingly recognized as a significant security threat. Jasper’s research is crucial for informing the decisions of those working on these challenges daily. In his near future endeavours, he aims to engage with the community in The Hague, understanding their primary challenges and collaborating to find solutions. We are excited to have Jasper on board and look forward to the significant contributions he will make to our community and beyond. Welcome, Jasper!

Half Height Horizontal

Students Amos Yusuf, Mick Dam & Bas Brouwer winners of Mekel Prize 2024

Master students Amos Yusuf, from the ME faculty (Mick Dam, from the EEMCS faculty and graduate Bas Brouwer have won the Mekel Prize 2024 for the best extra scientific activity at TU Delft: the development of an initiative that brings master students into the classroom teaching sciences to the younger generations. The prize was ceremonially awarded by prof Tim van den Hagen on 13 November after the Van Hasselt Lecture at the Prinsenhof, Delft. They received a statue of Professor Jan Mekel and 1.500,- to spend on their project. Insights into climate change are being openly doubted. Funding for important educational efforts and research are being withdrawn. Short clips – so called “reels” – on Youtube and TikTok threaten to simplify complex political and social problems. AI fakes befuddle what is true and what is not. The voices of science that contribute to those discussion with modesty, careful argument and scepticism, are drowned in noise. This poses a threat for universities like TU Delft, who strive to increase student numbers, who benefit from diverse student populations and aim to pass on their knowledge and scientific virtues to the next generation. It is, therefore, alarming that student enrolments to Bachelor and Master Programs at TU Delft have declined in the past year. Students in front of the class The project is aimed to make the sciences more appealing to the next generation. They have identified the problem that students tend miss out on the opportunity of entering a higher education trajectory in the Beta sciences – because they have a wrong picture of such education. In their mind, they depict it as boring and dry. In his pilot lecture at the Stanislas VMBO in Delft, Amos Yusuf has successfully challenged this image. He shared his enthusiasm for the field of robotics and presented himself as a positive role model to the pupils. And in return the excitement of the high school students is palpable in the videos and pictures from the day. The spark of science fills their eyes. Bas Brouwer Mick Dam are the founders of NUVO – the platform that facilitates the engagement of Master Students in high school education in Delft Their efforts offer TU Delft Master Students a valuable learning moment: By sharing insights from their fields with pupils at high school in an educational setting, our students can find identify their own misunderstandings of their subject, learn to speak in front of non-scientific audiences and peak into education as a work field they themselves might not have considered. An extraordinary commitment According to the Mekel jury, the project scored well on all the criteria (risk mitigation, inclusiveness, transparency and societal relevance). However, it was the extraordinary commitment of Amos who was fully immersed during his Master Project and the efforts of Brouwer and Dam that brought together teaching and research which is integral to academic culture that made the project stand out. About the Mekel Prize The Mekel Prize will be awarded to the most socially responsible research project or extra-scientific activity (e.g. founding of an NGO or organization, an initiative or realization of an event or other impactful project) by an employee or group of employees of TU Delft – projects that showcase in an outstanding fashion that they have been committed from the beginning to relevant moral and societal values and have been aware of and tried to mitigate as much as possible in innovative ways the risks involved in their research. The award recognizes such efforts and wants to encourage the responsible development of science and technology at TU Delft in the future. For furthermore information About the project: https://www.de-nuvo.nl/video-robotica-pilot/ About the Mekel Prize: https://www.tudelft.nl/en/tpm/our-faculty/departments/values-technology-and-innovation/sections/ethics-philosophy-of-technology/mekel-prize

New catheter technology promises safer and more efficient treatment of blood vessels

Each year, more than 200 million catheters are used worldwide to treat vascular diseases, including heart disease and artery stenosis. When navigating into blood vessels, friction between the catheter and the vessel wall can cause major complications. With a new innovative catheter technology, Mostafa Atalla and colleagues can change the friction from having grip to completely slippery with the flick of a switch. Their design improves the safety and efficiency of endovascular procedures. The findings have been published in IEEE. Catheter with variable friction The prototype of the new catheter features advanced friction control modules to precisely control the friction between the catheter and the vessel wall. The friction is modulated via ultrasonic vibrations, which overpressure the thin fluid layer. This innovative variable friction technology makes it possible to switch between low friction for smooth navigation through the vessel and high friction for optimal stability during the procedure. In a proof-of-concept, Atalla and his team show that the prototype significantly reduces friction, averaging 60% on rigid surfaces and 11% on soft surfaces. Experiments on animal aortic tissue confirm the promising results of this technology and its potential for medical applications. Fully assembled catheters The researchers tested the prototype during friction experiments on different tissue types. They are also investigating how the technology can be applied to other procedures, such as bowel interventions. More information Publicatie DOI : 10.1109/TMRB.2024.3464672 Toward Variable-Friction Catheters Using Ultrasonic Lubrication | IEEE Journals & Magazine | IEEE Xplore Mostafa Atalla: m.a.a.atalla@tudelft.nl Aimee Sakes: a.sakes@tudelft.nl Michaël Wiertlewski: m.wiertlewski@tudelft.nl Would you like to know more and/or attend a demonstration of the prototype please contact me: Fien Bosman, press officer Health TU Delft: f.j.bosman@tudelft.nl/ 0624953733

A key solution to grid congestion

On behalf of the TU Delft PowerWeb Institute, researchers Kenneth Brunninx and Simon Tindemans are handing over a Position Paper to the Dutch Parliament on 14 November 2024, with a possible solution to the major grid capacity problems that are increasingly cropping up in the Netherlands. The Netherlands is unlikely to meet the 2030 climate targets, and one of the reasons for this is that large industry cannot switch to electricity fast enough, partly because of increasingly frequent problems around grid capacity and grid congestion. In all likelihood, those problems will actually increase this decade before they can decrease, the researchers argue. The solution offered by the TU Delft PowerWeb Institute researchers is the ‘flexible backstop’. With a flexible backstop, the current capacity of the power grid can be used more efficiently without sacrificing safety or reliability. A flexible backstop is a safety mechanism that automatically and quickly reduces the amount of electricity that an electric unit can draw from the grid (an electric charging station or a heat pump) or deliver (a PV installation). It is a small device connected or built into an electrical unit, such as a charging station or heat pump, that ‘communicates’ with the distribution network operator. In case of extreme stress on the network, the network operator sends a signal to the device to limit the amount of power. Germany recently introduced a similar system with electric charging stations. The backstop would be activated only in periods of acute congestion problems and could help prevent the last resort measure, which is cutting off electricity to users. ‘Upgrading the electricity network remains essential, but in practice it will take years. So there is a need for short-term solutions that can be integrated into long-term planning. We, the members of the TU Delft PowerWeb Institute, call on the government, network operators and regulator to explore the flexible backstop as an additional grid security measure,’ they said. The entire Paper can be read here . Kenneth Brunninx Associate Professor at the Faculty of Engineering, Governance and Management, where he uses quantitative models to evaluate energy policy and market design with the aim of reducing CO2 emissions. Simon Tindemans is Associate Professor in the Intelligent Electrical Power Grids group at Faculty of Electrical Engineering, Mathematics and Computer Science. His research interests include uncertainty and risk management for power grids. TU Delft PowerWeb Institute is a community of researchers who are investigating how to make renewable energy systems reliable, future proof and accessible to everyone.

25 year celebration of formal collaboration between Delft University of Technology and the University of Campinas

On 25 October 2024 we celebrated 25 years of formal collaboration between Delft University of Technology and the University of Campinas. What began as a project to exchange some students in chemical engineering has now grown to a multifaceted and broad academic collaboration which accumulated into 24 joint research projects (>20 M Euro); 16 advanced courses and 15 Doctors with a Dual Degree PhD. Patricia Osseweijer, TU Delft Ambassador Brazil explained, “We are proud to show and reflect on this special day the added value we created resulting from our joint activities. The lessons we learned demonstrate that especially continuity of funds and availability for exchanges has contributed to joint motivation and building trust which created strong relations. This is the foundation for academic creativity and high-level achievements.” The program presented showcases of Dual Degree projects; research activities and education. It discussed the future objectives and new fields of attention and agree on the next steps to maintain and strengthen the foundation of strong relations. Telma Franco, Professor UNICAMP shared that “joint education and research has substantially benefitted the students, we see that back in the jobs they landed in,” while UNICAMP’s Professor Gustavo Paim Valenca confirmed that “we are keen to extend our collaboration to more engineering disciplines to contribute jointly to global challenges” Luuk van der Wielen highlighted that “UNICAMP and TU Delft provide valuable complementary expertise as well as infrastructures to accelerate research and innovation. Especially our joint efforts in public private partnerships brings great assets” To ensure our future activities both University Boards have launched a unique joint program for international academic leadership. This unique 7-month program will accommodate 12 young professors, 6 from each university. The programme began on 4 November 2024 in Delft, The Netherlands.

Christmas lunch

Take part in a festive lunch with MoTiv, TU Delft Studentenraad en TU Delft ESA This holiday season, MoTiv, TU Delft, and the local Delft churches are bringing together homes and students for a special, heartwarming experience, and we would love for you to be part of it! After three successful years, we’re excited to continue this festive tradition, bridging cultures and creating connections. Are you interested in joining a holiday lunch as a guest , along with other international students, in a welcoming Delft-area home? Or perhaps you’d like to open your home as a host , sharing a warm, cultural celebration with students from around the world? This special event will take place from December 23rd to December 31st, between 12:00 and 15:00 . For Guests : If you’d like to participate as a guest, we’ll match you with a local host eager to share their holiday traditions. You’ll enjoy delicious dishes, laughter, and meaningful conversations, creating memories that feel like home, even far from family. Once matched, we’ll connect you with your host so you can coordinate details and meal plans together. Sign up as a guest in this google forms.(https://forms.gle/yLAqE83DcqWGwcKB8) For Hosts : If you’re interested in hosting, this is a wonderful opportunity to welcome students into your home for a memorable meal. By sharing food, stories, and perhaps even a few games, you’ll help make the season brighter for students eager to experience Dutch hospitality and holiday traditions. Sign up as a host in this google forms.( https://forms.gle/bJB5svxJZ1iTSF1c6 ) For any questions, feel free to reach out to us at motiv.connects@gmail.com. For more information, please visit our website at www.motiv.tudelft.nl/christmas-lunch-delft/ . Thank you for making this holiday season unforgettable. We look forward to celebrating with you! Warm regards, MoTiv, TU Delft Student Council, TU Delft ESA - Student Community Team