Filter results

9626 resultaten

4TU Energy grant for Bijoy Bera for research (with UT) on Magneto-Iono-caloric Heat Pumps

Recently, dr. Bijoy Bera (Interfacial Physis Lab/Transport Phenomena Section) received, together with his collaborator dr. Keerthivasan Rajamani (University of Twente), the 4TU Energy grant, which promotes collaborative efforts among the four technical universities of NL to address the energy issues/future of this country. ChemE News sat down with Bijoy for more info. What is a heat pump? Why does NL need them? What’s wrong with the current heat pumps? A pump is a device where we put (electrical) energy to obtain work. Heat pump is where work (together with heat from a source) is supplied to a device to obtain heat, very useful for efficient heating of households. The heating demand for the built environment in the Netherlands alone is expected to be 333 PJ of energy in 2030. As of 2022, 82% of Dutch households still use natural gas for heating. (Traditional vapor compression system) Heat pumps are being increasingly used in Dutch households (if you ask me, not as much as should be), but the major problem is their efficiency, which tends to hover around 40%-50%. How is your research going to improve the situation? Dr. Rajamani (UT) and I are going to investigate, model and design a new type of heat-pump: Magneto-iono-caloric heat pumps. We plan to use magnetic ionic liquids where low strength magnetic field can be used to bring the melting point of a salt down to below the room temperature. The heat of solidification/crystallization of the salt can then subsequently be used as the heat source of the heat pump, which will lead to higher Carnot efficiency. What is the nature of the collaboration in this project? Keerthi (Dr Rajamani) is an expert in magneto-caloric devices where magnetic fields are applied to change the energy input/output of a system. I will bring my expertise of ionic manipulation of energy interactions in a system. Keerthi and I were chatting about our areas of interest about a year ago, and we realized that by combining these two points of interest, we can come up with something unique! Dr. Bijoy Bera Why is this research important? Will this grant be sufficient in that quest? There is right now a strong direction in the Dutch research landscape to contribute to new forms of energy and how to increase efficiency in processes producing these forms of energy. However, classic thermodynamic processes (such as a heat pump) are often overlooked. This grant is a small but timely incentive for us to start the work, and hopefully our results will inspire colleagues to join us and create a platform for something bigger. Sounds interesting! When can we buy magneto-iono-caloric heat pumps for our houses? Not for a little while, unfortunately! But we are talking about years not decades! And once we can make it, it will open many doors for us, not only for household heating, but for renewed faith in novel energy systems!

Half Height Horizontal

NWO kent financiering toe voor innovatief onderzoek naar fysieke experimentele omgevingen

Hoe kan je innovaties uit experimenten mainstreamen? Een consortium onder leiding van professor Tamara Metze heeft een prestigieuze NWO subsidie ontvangen. In een zoektocht naar paden naar meer duurzame toekomsten, gaan Metze en haar team onderzoeken hoe verschillende vormen van innovatie in fieldlabs, zoals The Green Village, in stedelijke living labs, zoals het Energielab Zuidoost in Amsterdam, en allerlei burgerinitiatieven meer impact kunnen hebben op duurzaamheidstransities. Pilot paradox Een grote uitdaging is een hardnekkige "pilot paradox", waarbij veel geleerd en geïnnoveerd is in experimenteer omgevingen, maar zij er niet in lijken te slagen langdurige, systemische verandering voor elkaar te krijgen. Het project ‘From EXperiment to sustainable change: TRAnsformative methodologies for Innovation and learning’ (EXTRA) wil de “pilot paradox” overkomen. Daarin wordt veel ge-experimenteerd maar lange termijn, systeemverandering blijft moeilijk. Onderzoekers gaan samen met allerlei veranderaars bestaande kennis bij elkaar brengen. Tamara Metze: ‘Ik heb erg veel zin om te gaan ontdekken wat effectieve manieren van co-creatie zijn die het mainstreamen van de duurzame innovaties mogelijk maakt. We gaan ontdekken hoe leren en innovatie leiden tot blijvende veranderingen in regelgeving, beleid, financiële systemen en de biofysische omgeving.’ Tamara Metze Lees het NWO-persbericht Concrete tools Het project is cruciaal voor het versnellen van duurzaamheidstransities. Door via trans-disciplinair actie-onderzoek praktische tools te ontwikkelen voor allerlei veranderaars, wordt het eenvoudiger om de methoden van co-creatie en mainstreamen effectiever en overdraagbaar te maken. ‘Deze tools zullen niet alleen grassroots-innovatoren zoals start ups en living labs ondersteunen, maar ook invloed hebben op institutionele en organisatorische structuren, zodat de lessen uit experimenten beter verankerd worden in beleid, regelgeving en organisaties’, legt Metze uit. Op de lange termijn streeft het project naar een efficiënter innovatie-ecosysteem, dat bijdraagt aan meer impactvolle en duurzame resultaten voor zowel de samenleving als het milieu. Projectpartners TU Delft, VU Amsterdam, Wageningen University & Research, Hogeschool van Amsterdam, Erasmus Universiteit Rotterdam, Hogeschool Rotterdam, The Green Village, AMS Institute; PBL Planbureau voor de Leefomgeving, WoonFriesland, Dijkstra Draisma, Provincie Noord-Holland, Ministerie van Binnenlandse Zaken, PRICE / Almere, BouwLab, Alliantie Samen Nieuw-West, Innovation Quarter.

Bijzondere golven worden veel groter dan het bekende maximum

Kruisende golven blijken extremer dan extreem te zijn. Deze bijzondere diepzeegolven, waar nog weinig over bekend is, kunnen vier keer steiler worden dan voor mogelijk werd gehouden. Dit blijkt uit onderzoek van de TU Delft en andere universiteiten dat vandaag is gepubliceerd is Nature. Lang geleden gingen er verhalen rond over mysterieuze monstergolven die uit het niets leken te ontstaan en zelfs grote schepen omverhaalden. Het mythische karakter werd verleden tijd toen zo’n monstergolf voor het eerst werd vastgelegd bij het Draupner platform in de Noordzee. In 2018 lukte het Ton van den Bremer en zijn collega’s bij de Universiteiten van Edinburgh en Oxford om voor het eerst ooit deze Draupner-golf na te bootsen in het lab. Dit bood hen de kans om de golf nauwkeurig te bestuderen. En dat gaf onverwachte inzichten. Meerdere golven stuwen water omhoog Uit nieuw onderzoek van het onderzoeksconsortium blijkt nu dat dit bijzondere type golf niet breekt op het moment dat het volgens gangbare theorieën zou moeten breken. De verklaring hiervoor ligt in de ontstaanswijze van het monster. Ton van den Bremer, expert op het gebied van vloeistofmechanica bij de TU Delft, licht toe: “De golven die de meeste mensen van het strand kennen rollen vooruit. Het type golf dat wij onderzochten komt voor op open water en ontstaat als er golven vanuit meerdere richtingen samenkomen.” Als deze golven met een hoge directionele spreiding samenkomen wordt het water omhooggestuwd, een staande golf. Een voorbeeld daarvan is een kruisgolf. Hoe ontstaan kruisgolven Onder bepaalde omstandigheden op zee komen golven uit meerdere richtingen voor. Dit kan gebeuren op een plek waar twee zeeën samenkomen, of waar de windplots van richting verandert, zoals in een orkaan. Als golven uit twee richtingen samenkomen ontstaat een kruisgolf, zolang de richtingen maar ver genoeg uit elkaar liggen. Uit het onderzoek blijkt ook dat hoe verder de richtingen uit elkaar liggen, hoe hoger de kruisgolf kan worden. De rollende golven breken bij een bepaald limiet en bereiken dan ook hun maximale steilheid. Het onderzoek laat zien dat golven met een hoge directionele spreiding wel tachtig procent steiler kunnen worden dan dit limiet, voordat ze beginnen te breken. Deze golven kunnen zo bijna twee keer hoger worden dan ‘gangbare golven’ voordat ze beginnen te breken. Rollende golf (l) en golf met hoge directionele spreiding (r). Zwellen terwijl het breekt De onderzoekers stuitten op nog een ander bijzonder fenomeen dat breekt met bestaande theorieën. En dat is ongekend, volgens Van den Bremer: “Als een golf eenmaal begint te breken zie je een witte kop ontstaan, en is er normaliter geen weg meer terug. Maar als een golf met een hoge directionele spreiding begint met breken, kan de golf nog steeds verder groeien.” Het onderzoek laat zien dat deze enorme golven, tijdens het breekproces, nog eens twee keer zo steil kunnen worden, wat al twee keer steiler was dat het oorspronkelijk limiet. Bij elkaar opgeteld kunnen de golven dus vier keer zo steil worden als voor mogelijk werd gehouden. Schade aan offshore constructies De kennis dat golven die uit meerdere richtingen komen wel vier keer groter kunnen worden dan gedacht, kan houvast bieden om bouwwerken in zee veiliger te maken. “De driedimensionaliteit van golven wordt vaak over het hoofd gezien bij het ontwerp van offshore windturbines en andere constructies. Onze bevindingen suggereren dat dit leidt tot ontwerpen die minder betrouwbaar zijn”, zegt Mark McAllister van de University of Oxford, die de experimenten leidde en inmiddels werkzaam als senior onderzoeker bij Wood Thilsted. Dankzij de innovatie verticale sensoren is het mogelijk om nauwkeurige 3D metingen te doen van de golven. Innovatie in 3D-meetmethode De inzichten zijn te danken aan de ontwikkeling van een 3D-meetmethode in het FloWave lab. “De gebruikelijke 2D-methoden om golven te onderzoeken waren niet toereikend”, vertelt Van den Bremer. De onderzoeksgroep ontwierp een nieuwe manier om een 3D-beeld van de golven te krijgen. Ross Calvert van de University of Edinburgh: “Voor het eerst is het gelukt om golfhoogtes te meten met zo'n hoge ruimtelijke resolutie over zo'n groot gebied. Zo konden we veel meer details begrijpen van het complexe breken van golven.” FloWave Ocean Energy Research Facility in Edinburgh. In het ronde bassin van 25 meter kunnen golven vanuit meerdere richtingen kunnen worden gegenereerd. Headerfoto door: Fabien Duboc