Filter results

48203 results

Seminar Graphs&Data@TU Delft - 14th Mar

Seminar Graphs&Data@TU Delft - 14th Mar 14th March 14 March 2024 10:30 till 12:00 | Add to my calendar This is a series of seminars/talks bringing together people from all TU Delft doing research on Graphs and Data who could benefit from the interchange of ideas with colleagues on different topics. This seminar will take place on Thursday 14th March , from 10:30 to 12:00 . Place : KG 02.110, Civil Engineering and Geosciences (CEG), Building 23 Register here for in person attendance Speakers Klaus Hildebrandt Title: Geometry Processing: Discretization, Learning and Analysis Abstract : Advances in 3D capture, fabrication and display technologies over the past decade have led to the intensive use of 3D data in a variety of scientific disciplines and application domains posing a demand for computational methods for analysing and processing geometric data. This talk is divided into three parts. First, we discuss geometric properties of continuous surfaces and their discrete counterparts. In the second part, we look at the construction of convolutions on surfaces in the context of geometric deep learning. Finally, we discuss the analysis and synthesis of shapes using Riemannian shapes spaces. Maosheng Yang Title: Hodge-compositional Edge Gaussian Processes Abstract : We propose principled Gaussian processes (GPs) for modeling functions defined over the edge set of a simplicial 2-complex, a structure similar to a graph in which edges may form triangular faces. This approach is intended for learning flow-type data on networks where edge flows can be characterized by the discrete divergence and curl. Drawing upon the Hodge decomposition, we first develop classes of divergence-free and curl-free edge GPs, suitable for various applications. We then combine them to create Hodge-compositional edge GPs that are expressive enough to represent any edge function. These GPs facilitate direct and independent learning for the different Hodge components of edge functions, enabling us to capture their relevance during hyperparameter optimization. To highlight their practical potential, we apply them for flow data inference in currency exchange, ocean current analysis and water supply networks. Ruben Wiersma Title: DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds Abstract : Learning from 3D point-cloud data has rapidly gained momentum, motivated by the success of deep learning on images and the increased availability of 3D data. In this talk, we aim to construct anisotropic convolution layers that work directly on the surface derived from a point cloud. This is challenging because of the lack of a global coordinate system for tangential directions on surfaces. We describe DeltaConv, a convolution layer that combines geometric operators from vector calculus to enable the construction of anisotropic filters on point clouds. Because these operators are defined on scalar- and vector-fields, we separate the network into a scalar- and a vector-stream, which are connected by the operators. The vector stream enables the network to explicitly represent, evaluate, and process directional information. Our convolutions are robust and simple to implement and match or improve on state-of-the-art approaches on several benchmarks, while also speeding up training and inference.

Minor

When You have to take a minor in the third year of the BSc programme. In the event of a study delay or a bridging minor, it is possible to spread the courses of the minor over several semesters or even years. Good planning is necessary, so make an appointment with the academic counsellor . Choice of minor and contact information check out minors.tudelft.nl for more information about possible minors. There you will also find the contact details for more information per minor. Self-composed minor TPM The requirements for a self-composed minor can be found on minors.tudelft.nl . You must request a self-composed minor from the Examination Board in advance using the “ self-composed minor ” form. Keep in mind that approval by the TPM Examination Board is independent of admission to the specific minor or individual courses. You must therefore arrange this admission separately. How this should be done differs per university and study programme and we recommend you to contact the study programme of your choice. If you have any questions about this, you can contact the academic counsellor . Minor abroad During your BSc there is the possibility to study abroad. This way, you can take courses that you can use as a minor. More information can be found at studyabroad.tudelft.nl and the faculty specific website. After reading this website, you can contact International Office if you have any questions. Make an apppointment: via e-mail or online agenda E-Health Awareness Self Management Current information can be found on Brightspace More information about internships

Circularity in the Built Environment Graduation Awards 2023: Meet the Winners

From a circular approach to transitional housing to balanced reuse of industrial heritages: at TU Delft’s Faculty of Architecture and the Built Environment many master students direct their efforts towards more circular practises. In October 2023, the jury announced the five winners of the Circularity in the Built Environment Graduation Awards (2022-2023). In an interview, each winner gives an impression of his or her graduation project, explaining how circular practices may be achieved through thoughtful and meticulous design and engineering. Circularity in the Built Environment Graduation Awards The annual Circularity in the Built Environment Graduation Awards recognise the contribution BK graduation students make to the transition toward a circular built environment and aim to stimulate research and innovation in the field. The Circularity in the Built Environment Graduation Awards is an initiative of the Circular Built Environment Hub of the Faculty of Architecture and the Built Environment. The winners of the 2022-2023 edition were selected from four categories: Materials & Components (Tillmann Klein Award), Buildings & Neighbourhoods, Cities & Regions en Management & Policy. From a circular approach to transitional housing to balanced reuse of industrial heritages: at TU Delft’s Faculty of Architecture and the Built Environment many master students direct their efforts towards more circular practises. In October 2023, the jury announced the five winners of the Circularity in the Built Environment Graduation Awards (2022-2023). In a brief interview, each winner gives an impression of his or her graduation project, explaining how circular practices may be achieved through thoughtful and meticulous design and engineering. Meet the Winners Circularity in the Built Environment Graduation Awards The annual Circularity in the Built Environment Graduation Awards recognise the contribution BK graduation students make to the transition toward a circular built environment and aim to stimulate research and innovation in the field. The Circularity in the Built Environment Graduation Awards is an initiative of the Circular Built Environment Hub of the Faculty of Architecture and the Built Environment. The winners of the 2022-2023 edition were selected from four categories: Materials & Components (Tillmann Klein Award), Buildings & Neighbourhoods, Cities & Regions en Management & Policy. Meet the Winners Skin (t)issue: in search of flexible bio-based facade cladding As a Building Technology master’s student Samanwita develops a particular interest in circular facade cladding design concepts. Might there be a renewable alternative for conventional materials like brick, steel and aluminium? “Of course there are historical examples of mud cladding and timber claddings are quite common. But I was looking for a sheet material that can be applied in cladding systems with complex geometries." Read the story of Samanwita Ghosh Samanwita Ghosh | Winner in the category 'Materials & Components (Tillmann Klein Award)' Samanwita Ghosh | Winner in the category 'Materials & Components (Tillmann Klein Award)' Skin (t)issue: in search of flexible bio-based facade cladding As a Building Technology master’s student Samanwita develops a particular interest in circular facade cladding design concepts. Might there be a renewable alternative for conventional materials like brick, steel and aluminium? “Of course there are historical examples of mud cladding and timber claddings are quite common. But I was looking for a sheet material that can be applied in cladding systems with complex geometries." Read the story of Samanwita Ghosh How to make a new home in a Korean high-rise In the decades following the Korean War (1950 – 1953) concrete high-rise apartment buildings came to dominate South Korea’s metropolitan landscape. At the end of their relatively short lives, they are demolished and replaced by bigger versions, which does not make for sustainable building practice. Inspired by open-source architecture and modular building Yeonghwa Choe proposes an alternative approach. Read the story of Yeonghwa Choe Yeonghwa Choe | Winner in the category 'Buildings & Neighbourhoods' Yeonghwa Choe | Winner in the category 'Buildings & Neighbourhoods' How to make a new home in a Korean high-rise In the decades following the Korean War (1950 – 1953) concrete high-rise apartment buildings came to dominate South Korea’s metropolitan landscape. At the end of their relatively short lives, they are demolished and replaced by bigger versions, which does not make for sustainable building practice. Inspired by open-source architecture and modular building Yeonghwa Choe proposes an alternative approach. Read the story of Yeonghwa Choe Gimme better shelter: a circular approach to transitional housing As climate change and conflicts are displacing more and more people across the globe, the demand for shelter and temporary housing is growing. In her master’s thesis Julia Gospodinova zooms in on transitional housing practice and offers designers and decision-makers a method to make practice more circular. “Matching acceptable living conditions with environmental, social and economic sustainability is essential.” Read the story of Julia Gospodinova Julia Gospodinova | Winner in the category 'Buildings & Neighbourhoods' Julia Gospodinova | Winner in the category 'Buildings & Neighbourhoods' Gimme better shelter: a circular approach to transitional housing As climate change and conflicts are displacing more and more people across the globe, the demand for shelter and temporary housing is growing. In her master’s thesis Julia Gospodinova zooms in on transitional housing practice and offers designers and decision-makers a method to make practice more circular. “Matching acceptable living conditions with environmental, social and economic sustainability is essential.” Read the story of Julia Gospodinova Making the right connections in peri-urban China Shiru Liu grew up in a mixed urban and rural region in China’s Greater Bay Area, where she studied architecture and planning. For her master’s degree in Delft she decided to excavate the region’s potential for an industrial transition to circular and bio-based practices. “There’s a lot happening but an integral planning strategy for long-term development is lacking. As a planner I can provide synergy between policy, space and resources.” Read the story of Shiru Liu Shiru Liu | Winner in the category 'Cities & Regions' Shiru Liu | Winner in the category 'Cities & Regions' Making the right connections in peri-urban China Shiru Liu grew up in a mixed urban and rural region in China’s Greater Bay Area, where she studied architecture and planning. For her master’s degree in Delft she decided to excavate the region’s potential for an industrial transition to circular and bio-based practices. “There’s a lot happening but an integral planning strategy for long-term development is lacking. As a planner I can provide synergy between policy, space and resources.” Read the story of Shiru Liu Place for the trades and high-tech: towards balanced reuse of industrial heritage Under what conditions can old industrial buildings in cities offer space for contemporary industry and help prepare for and facilitate a circular economy? Master's student Christiaan Hanse went in search of answers and came up with a strategic assessment framework. Read the story of Christiaan Hanse Christiaan Hanse | Winner in the category 'Management & Policy' Christiaan Hanse | Winner in the category 'Management & Policy' Place for the trades and high-tech: towards balanced reuse of industrial heritage Under what conditions can old industrial buildings in cities offer space for contemporary industry and help prepare for and facilitate a circular economy? Master student Christiaan Hanse went in search of answers and came up with a strategic assessment framework. Read the story of Christiaan Hanse

Half Height Horizontal

TU Delft jointly wins XPRIZE Rainforest drone competition in Brazil

TU Delft jointly wins in the XPRIZE Rainforest competition in the Amazon, Brazil Imagine using rapid and autonomous robot technology for research into the green and humid lungs of our planet; our global rainforests. Drones that autonomously deploy eDNA samplers and canopy rafts uncover the rich biodiversity of these complex ecosystems while revealing the effects of human activity on nature and climate change. On November 15, 2024, after five years of intensive research and competition, the ETHBiodivX team, which included TU Delft Aerospace researchers Salua Hamaza and Georg Strunck, achieved an outstanding milestone: winning the XPRIZE Rainforest Bonus Prize for outstanding effort in co-developing inclusive technology for nature conservation. The goal: create automated technology and methods to gain near real-time insights about biodiversity – providing necessary data that can inform conservation action and policy, support sustainable bioeconomies, and empower Indigenous Peoples and local communities who are the primary protectors and knowledge holders of the planet’s tropical rainforests. The ETHBiodivX team, made of experts in Robotics, eDNA, and Data Insights, is tackling the massive challenge of automating and streamlining the way we monitor ecosystems. Leading the Robotics division, a collaboration between TU Delft’s Prof. Salua Hamaza, ETH Zurich’s Prof. Stefano Mintchev and Aarhus University’s Profs. Claus Melvad and Toke Thomas Høye, is developing cutting-edge robotic solutions to gather ecology and biology data autonomously. “We faced the immense challenge of deploying robots in the wild -- and not just any outdoor environment but one of the most demanding and uncharted: the wet rainforests. This required extraordinary efforts to ensure robustness and reliability, pushing the boundaries of what the hardware could achieve for autonomous data collection of images, sounds, and eDNA, in the Amazon” says prof. Hamaza. “Ultimately, this technology will be available to Indigenous communities as a tool to better understand the forest's ongoing changes in biodiversity, which provide essential resources as food and shelter to the locals.” . . . .

Students Amos Yusuf, Mick Dam & Bas Brouwer winners of Mekel Prize 2024

Master students Amos Yusuf, from the ME faculty (Mick Dam, from the EEMCS faculty and graduate Bas Brouwer have won the Mekel Prize 2024 for the best extra scientific activity at TU Delft: the development of an initiative that brings master students into the classroom teaching sciences to the younger generations. The prize was ceremonially awarded by prof Tim van den Hagen on 13 November after the Van Hasselt Lecture at the Prinsenhof, Delft. They received a statue of Professor Jan Mekel and 1.500,- to spend on their project. Insights into climate change are being openly doubted. Funding for important educational efforts and research are being withdrawn. Short clips – so called “reels” – on Youtube and TikTok threaten to simplify complex political and social problems. AI fakes befuddle what is true and what is not. The voices of science that contribute to those discussion with modesty, careful argument and scepticism, are drowned in noise. This poses a threat for universities like TU Delft, who strive to increase student numbers, who benefit from diverse student populations and aim to pass on their knowledge and scientific virtues to the next generation. It is, therefore, alarming that student enrolments to Bachelor and Master Programs at TU Delft have declined in the past year. Students in front of the class The project is aimed to make the sciences more appealing to the next generation. They have identified the problem that students tend miss out on the opportunity of entering a higher education trajectory in the Beta sciences – because they have a wrong picture of such education. In their mind, they depict it as boring and dry. In his pilot lecture at the Stanislas VMBO in Delft, Amos Yusuf has successfully challenged this image. He shared his enthusiasm for the field of robotics and presented himself as a positive role model to the pupils. And in return the excitement of the high school students is palpable in the videos and pictures from the day. The spark of science fills their eyes. Bas Brouwer Mick Dam are the founders of NUVO – the platform that facilitates the engagement of Master Students in high school education in Delft Their efforts offer TU Delft Master Students a valuable learning moment: By sharing insights from their fields with pupils at high school in an educational setting, our students can find identify their own misunderstandings of their subject, learn to speak in front of non-scientific audiences and peak into education as a work field they themselves might not have considered. An extraordinary commitment According to the Mekel jury, the project scored well on all the criteria (risk mitigation, inclusiveness, transparency and societal relevance). However, it was the extraordinary commitment of Amos who was fully immersed during his Master Project and the efforts of Brouwer and Dam that brought together teaching and research which is integral to academic culture that made the project stand out. About the Mekel Prize The Mekel Prize will be awarded to the most socially responsible research project or extra-scientific activity (e.g. founding of an NGO or organization, an initiative or realization of an event or other impactful project) by an employee or group of employees of TU Delft – projects that showcase in an outstanding fashion that they have been committed from the beginning to relevant moral and societal values and have been aware of and tried to mitigate as much as possible in innovative ways the risks involved in their research. The award recognizes such efforts and wants to encourage the responsible development of science and technology at TU Delft in the future. For furthermore information About the project: https://www.de-nuvo.nl/video-robotica-pilot/ About the Mekel Prize: https://www.tudelft.nl/en/tpm/our-faculty/departments/values-technology-and-innovation/sections/ethics-philosophy-of-technology/mekel-prize

New catheter technology promises safer and more efficient treatment of blood vessels

Each year, more than 200 million catheters are used worldwide to treat vascular diseases, including heart disease and artery stenosis. When navigating into blood vessels, friction between the catheter and the vessel wall can cause major complications. With a new innovative catheter technology, Mostafa Atalla and colleagues can change the friction from having grip to completely slippery with the flick of a switch. Their design improves the safety and efficiency of endovascular procedures. The findings have been published in IEEE. Catheter with variable friction The prototype of the new catheter features advanced friction control modules to precisely control the friction between the catheter and the vessel wall. The friction is modulated via ultrasonic vibrations, which overpressure the thin fluid layer. This innovative variable friction technology makes it possible to switch between low friction for smooth navigation through the vessel and high friction for optimal stability during the procedure. In a proof-of-concept, Atalla and his team show that the prototype significantly reduces friction, averaging 60% on rigid surfaces and 11% on soft surfaces. Experiments on animal aortic tissue confirm the promising results of this technology and its potential for medical applications. Fully assembled catheters The researchers tested the prototype during friction experiments on different tissue types. They are also investigating how the technology can be applied to other procedures, such as bowel interventions. More information Publicatie DOI : 10.1109/TMRB.2024.3464672 Toward Variable-Friction Catheters Using Ultrasonic Lubrication | IEEE Journals & Magazine | IEEE Xplore Mostafa Atalla: m.a.a.atalla@tudelft.nl Aimee Sakes: a.sakes@tudelft.nl Michaël Wiertlewski: m.wiertlewski@tudelft.nl Would you like to know more and/or attend a demonstration of the prototype please contact me: Fien Bosman, press officer Health TU Delft: f.j.bosman@tudelft.nl/ 0624953733