Filter results

48185 results

About the programme

Applied Mathematics is for students who want to solve complex puzzles in our society. The bachelor's degree programme focuses primarily on the practical application of mathematics. You try to find solutions to problems by means of modelling. This provides a good basis for one of the specialisations found in the master's degree programme. Field of study Applied mathematicians solve problems by simulating reality through models. They work on the optimisation of search engines, transport system timetables, climate models, and navigation systems, but they also work in the financial world and in the field of risk analysis. In other words, mathematicians are valuable in a variety of disciplines. Financial mathematics As with weather forecasts, it is difficult to make predictions for the financial market. This might include forecasting exchange rates and predicting life expectancy for pension funds and insurance companies. You will need to call on the whole array of modern mathematical methods to make appropriate predictions. Mathematical physics This discipline deals with the mathematical modelling of physical phenomena, such as vibrations in buildings, currents in oceans and rivers, weather forecasts and epidemics. Numerical analysis This discipline focuses on the development and implementation of efficient algorithms in complex mathematical methods and the simulation of real-life situations. This can include the modelling of wound healing and scar formation, modelling interactive currents for real-time ship simulation and the prevention of power cuts. Optimisation This discipline focuses on the development of mathematical methods to determine optimum solutions to practical problems. This might include delivery routes of perishable food, timetables for the rail network, logistical problems at airports, scheduling pulmonary examinations and the strategy for the Nuna solar car in South Africa. Probability theory and statistics This discipline focuses on modelling and predicting real-life problems in which uncertainty plays an important role. This can include risks involved with medical treatment or the chance of infection through blood transfusion. But it can also involve answering such questions as: does a new therapy work better than the old one? Or: does a certain testosterone level provide enough evidence to conclude that a cyclist has used performance drugs? Study load 180 EC, 36 months Average study week Lectures 12 hours Projects 4 hours Instruction 10 hours Self-study 14 hours Curriculum This bachelor's degree is a three-year programme with a mix of teaching methods, such as lectures, instructions, projects and self-study. Lectures take place between 8:45 and 17:30. A lecture consists of two 45 minutes blocks, with a 15-minute break in between. The projects will help you to apply your knowledge in a group and experience the practical use of the various subjects and how they interrelate. You will also practise your presentation and reporting skills. Study plan The bachelor's degree programme is a three-year programme (180 credits) consisting of six semesters. Five semesters have a set programme, and you may choose your own subject for the sixth (the minor). View the curriculum Bindend Studieadvies TU Delft employs the BSA system: the binding recommendation on the continuation of studies. This means that you must obtain at least 75 per cent of your credits (i.e. 45 of the 60 ECTS) in your first year in order to continue your programme. If you receive a negative binding recommendation on the continuation of studies, you will not be permitted to enroll in this programme again in the next 4 years. Facts and figures 43 students started the double bachelor's programme in 2021 in Applied Mathematics and Applied Physics 11 students started the Excellence Programme Applied Mathematics in 2021 100% of study material is in English 3.8 on student satisfaction (NSE 2021) Studievereniging Christiaan Huygens ‘Christiaan Huygens’ is the study association for Applied Mathematics and Computer Science at the TU Delft. Go to Christiaan Huygens

Relevant Master's programmes

After your bachelor's degree programme, you can enrol directly in the master's programmes in Applied Mathematics or Science, Education and Communication. The master's degree programme takes two years and is taught in English. The programme is concluded with the final project phase, in which you will be employed as a starting mathematician in a business situation, for example. If you take a suitable bridging minor, you will be able to enrol in other technology master's degree programmes. Master's degree programmes within the faculty Applied Mathemetics During the Master’s programme in Applied Mathematics, you will learn how to model and analyse scientific, technical and social problems mathematically. You will learn the theory behind the necessary mathematics and discover how to design, implement and apply your mathematical methods. Science, Education and Communication - Science Communication Track If you are passionate about science and technology, are keen to add value in real-life situations and enjoy working with people, then the Master’s degree programme in Science, Education and Communication – Science Communication Track is for you. The ability to communicate well increases the quality of your work and is in great demand on the job market. Science Education and Communication - Science Education Track With the Master’s degree programme in Science Education and Communication – Science Education Track (teacher training programme), you can obtain your Post-Graduate Certificate in Education and you are certified to teach the upper classes of a secondary school. The programme educates teachers in secondary school subjects of Computer Science, Physics, Design, Chemistry and Mathematics. Master's degree programmes at other faculties With a bachelor's degree from TU Delft, you can go in different directions. Besides starting a master's within your faculty, you can also choose to do a master's at another faculty. It may be that your bachelor's does not contain the basis you need for the master's you want to do, in which case you will have to follow a bridging programme. All Master's of the TU Delft More on the bridging programme Master's degree programmes at other universities After your bachelor's, it is also possible to do a master's at another university. Here you will also have to switch from time to time. At www.welkemaster.nl you can check whether your master's fits your bachelor's.

Career opportunities

As a technical mathematician, you fulfil a bridging role between mathematics and problems in the working environment. You can see underlying connections and are analytically strong. You are also a good communicator, because you work a lot with specialists from other fields. These characteristics, as well as the fact that you learn to think critically and independently and to share insights with others, means that you are in great demand on the job market. Popular positions Consultant Lecturer Entrepreneur Researcher Risk analyst Data analyst Scientist Positions Many graduates opt for a job with the government, in education or in business. This includes research and management departments of multinationals, such as KPN and Shell. Or perhaps engineering and consultancy agencies, such as McKinsey. If you are more attracted to the financial sector, you could start work at a bank or insurance company like ING and Aegon. The Netherlands Forensic Institute, the Tax and Customs Administration and Statistics Netherlands are also among the possibilities. For an academic career, there are opportunities at universities and TNO. Completing a PhD You can start an academic career with a doctoral programme at the EEMCS Graduate School. Leading research is conducted at our faculty in the sectors of Applied Mathematics under supervised by renowned professors and lecturers. You will work in a heterogeneous, international environment and will continue to deepen and broaden your knowledge in the four years in the Graduate School Doctoral Education Programme. Ultimately, you will write a dissertation, incorporating your contribution to science. After you have successfully defended your doctoral dissertation, you may call yourself Dr. Ir. or PhD Where could you work? Consulting firm Banks and insurance companies Engineering firm Research department of (large) companies University Own company

Half Height Horizontal

Students Amos Yusuf, Mick Dam & Bas Brouwer winners of Mekel Prize 2024

Master students Amos Yusuf, from the ME faculty (Mick Dam, from the EEMCS faculty and graduate Bas Brouwer have won the Mekel Prize 2024 for the best extra scientific activity at TU Delft: the development of an initiative that brings master students into the classroom teaching sciences to the younger generations. The prize was ceremonially awarded by prof Tim van den Hagen on 13 November after the Van Hasselt Lecture at the Prinsenhof, Delft. They received a statue of Professor Jan Mekel and 1.500,- to spend on their project. Insights into climate change are being openly doubted. Funding for important educational efforts and research are being withdrawn. Short clips – so called “reels” – on Youtube and TikTok threaten to simplify complex political and social problems. AI fakes befuddle what is true and what is not. The voices of science that contribute to those discussion with modesty, careful argument and scepticism, are drowned in noise. This poses a threat for universities like TU Delft, who strive to increase student numbers, who benefit from diverse student populations and aim to pass on their knowledge and scientific virtues to the next generation. It is, therefore, alarming that student enrolments to Bachelor and Master Programs at TU Delft have declined in the past year. Students in front of the class The project is aimed to make the sciences more appealing to the next generation. They have identified the problem that students tend miss out on the opportunity of entering a higher education trajectory in the Beta sciences – because they have a wrong picture of such education. In their mind, they depict it as boring and dry. In his pilot lecture at the Stanislas VMBO in Delft, Amos Yusuf has successfully challenged this image. He shared his enthusiasm for the field of robotics and presented himself as a positive role model to the pupils. And in return the excitement of the high school students is palpable in the videos and pictures from the day. The spark of science fills their eyes. Bas Brouwer Mick Dam are the founders of NUVO – the platform that facilitates the engagement of Master Students in high school education in Delft Their efforts offer TU Delft Master Students a valuable learning moment: By sharing insights from their fields with pupils at high school in an educational setting, our students can find identify their own misunderstandings of their subject, learn to speak in front of non-scientific audiences and peak into education as a work field they themselves might not have considered. An extraordinary commitment According to the Mekel jury, the project scored well on all the criteria (risk mitigation, inclusiveness, transparency and societal relevance). However, it was the extraordinary commitment of Amos who was fully immersed during his Master Project and the efforts of Brouwer and Dam that brought together teaching and research which is integral to academic culture that made the project stand out. About the Mekel Prize The Mekel Prize will be awarded to the most socially responsible research project or extra-scientific activity (e.g. founding of an NGO or organization, an initiative or realization of an event or other impactful project) by an employee or group of employees of TU Delft – projects that showcase in an outstanding fashion that they have been committed from the beginning to relevant moral and societal values and have been aware of and tried to mitigate as much as possible in innovative ways the risks involved in their research. The award recognizes such efforts and wants to encourage the responsible development of science and technology at TU Delft in the future. For furthermore information About the project: https://www.de-nuvo.nl/video-robotica-pilot/ About the Mekel Prize: https://www.tudelft.nl/en/tpm/our-faculty/departments/values-technology-and-innovation/sections/ethics-philosophy-of-technology/mekel-prize

New catheter technology promises safer and more efficient treatment of blood vessels

Each year, more than 200 million catheters are used worldwide to treat vascular diseases, including heart disease and artery stenosis. When navigating into blood vessels, friction between the catheter and the vessel wall can cause major complications. With a new innovative catheter technology, Mostafa Atalla and colleagues can change the friction from having grip to completely slippery with the flick of a switch. Their design improves the safety and efficiency of endovascular procedures. The findings have been published in IEEE. Catheter with variable friction The prototype of the new catheter features advanced friction control modules to precisely control the friction between the catheter and the vessel wall. The friction is modulated via ultrasonic vibrations, which overpressure the thin fluid layer. This innovative variable friction technology makes it possible to switch between low friction for smooth navigation through the vessel and high friction for optimal stability during the procedure. In a proof-of-concept, Atalla and his team show that the prototype significantly reduces friction, averaging 60% on rigid surfaces and 11% on soft surfaces. Experiments on animal aortic tissue confirm the promising results of this technology and its potential for medical applications. Fully assembled catheters The researchers tested the prototype during friction experiments on different tissue types. They are also investigating how the technology can be applied to other procedures, such as bowel interventions. More information Publicatie DOI : 10.1109/TMRB.2024.3464672 Toward Variable-Friction Catheters Using Ultrasonic Lubrication | IEEE Journals & Magazine | IEEE Xplore Mostafa Atalla: m.a.a.atalla@tudelft.nl Aimee Sakes: a.sakes@tudelft.nl Michaël Wiertlewski: m.wiertlewski@tudelft.nl Would you like to know more and/or attend a demonstration of the prototype please contact me: Fien Bosman, press officer Health TU Delft: f.j.bosman@tudelft.nl/ 0624953733

A key solution to grid congestion

On behalf of the TU Delft PowerWeb Institute, researchers Kenneth Brunninx and Simon Tindemans are handing over a Position Paper to the Dutch Parliament on 14 November 2024, with a possible solution to the major grid capacity problems that are increasingly cropping up in the Netherlands. The Netherlands is unlikely to meet the 2030 climate targets, and one of the reasons for this is that large industry cannot switch to electricity fast enough, partly because of increasingly frequent problems around grid capacity and grid congestion. In all likelihood, those problems will actually increase this decade before they can decrease, the researchers argue. The solution offered by the TU Delft PowerWeb Institute researchers is the ‘flexible backstop’. With a flexible backstop, the current capacity of the power grid can be used more efficiently without sacrificing safety or reliability. A flexible backstop is a safety mechanism that automatically and quickly reduces the amount of electricity that an electric unit can draw from the grid (an electric charging station or a heat pump) or deliver (a PV installation). It is a small device connected or built into an electrical unit, such as a charging station or heat pump, that ‘communicates’ with the distribution network operator. In case of extreme stress on the network, the network operator sends a signal to the device to limit the amount of power. Germany recently introduced a similar system with electric charging stations. The backstop would be activated only in periods of acute congestion problems and could help prevent the last resort measure, which is cutting off electricity to users. ‘Upgrading the electricity network remains essential, but in practice it will take years. So there is a need for short-term solutions that can be integrated into long-term planning. We, the members of the TU Delft PowerWeb Institute, call on the government, network operators and regulator to explore the flexible backstop as an additional grid security measure,’ they said. The entire Paper can be read here . Kenneth Brunninx Associate Professor at the Faculty of Engineering, Governance and Management, where he uses quantitative models to evaluate energy policy and market design with the aim of reducing CO2 emissions. Simon Tindemans is Associate Professor in the Intelligent Electrical Power Grids group at Faculty of Electrical Engineering, Mathematics and Computer Science. His research interests include uncertainty and risk management for power grids. TU Delft PowerWeb Institute is a community of researchers who are investigating how to make renewable energy systems reliable, future proof and accessible to everyone.