Indian Institute of Technology Delhi and the Delft University of Technology collaborate to advance sustainable fuel technologies

Nieuws - 11 september 2024

Researchers from the Indian Institute of Technology Delhi (IIT Delhi) and the Delft University of Technology (TU Delft) have collaborated to advance sustainable fuel technologies through a joint project focused on bio-oil upgradation. The project, titled Bio-oil Upgradation to Fuel Range Hydrocarbons via Integrated Hydrodeoxygenation and Aqueous Phase Reforming, is being led by Prof. Sreedevi Upadhyayula from IIT Delhi and Dr. Atul Bansode from TU Delft, with support from both institutions under the MFIRP initiative.

The primary objective of this collaboration is to develop a sustainable method to convert lignin-derived bio-oil into valuable fuel-range hydrocarbons using catalytic processes. The work focuses on reducing the need for external hydrogen donors and freshwater by utilizing the bio-oil’s inherent compounds, which contributes to cleaner and more economically viable bio-refineries. A key aspect of the research has been the integration of Aqueous Phase Reforming (APR) with Hydrodeoxygenation (HDO). APR, which converts bio-oil components into hydrogen and hydrocarbons with water as a solvent, is performed at relatively low temperatures and is essential for hydrogen generation. The hydrogen produced in this process can then be used to support HDO, which efficiently removes oxygen from bio-oil to create fuel-range hydrocarbons.

The results from APR have been particularly promising. TUD work reported that using platinum-based catalysts, APR successfully achieved up to 60% conversion of maltose, a model compound with 42% hydrogen selectivity (Figure 1). Conversion and selectivity are based on analysis of only gaseous products. Whereas, for HDO reaction, the FESEM analysis, (Figure 2) revealed the enhanced surface morphology and dispersion of active sites in Cu-Re-SiO₂ catalysts after reduction, which significantly improved the catalytic performance and stability in bio-oil conversion processes.

The collaboration also involves reciprocal visits between the two institutions to facilitate knowledge sharing and advance experimental setups. Prof. Upadhyayula visited TU Delft, where discussions on the project's future directions were held while Dr. Bansode is set to visit IIT Delhi. The two teams have already begun joint publications, including a book chapter titled “Pyrolysis Bio-oil Upgradation to Fuels”, set to be published in 2024 along with journal articles.

The project’s long-term goal is to contribute to the global shift toward sustainable energy by offering alternatives to fossil fuels and reducing environmental impact. The research findings have potential applications in both Europe and India, particularly in lignin-abundant industries such as paper and ethanol production.

Figure 1. % Product Selectivity for all four screened catalysts
Figure 2. Field emission scanning electron microscopy microstructure image of catalyst after reduction (a) Cu-SiO2 catalyst (b) Cu-Re-SiO2 catalyst