Card Overview

Governance

Team Underlying or overarching all actions, pilots and projects proposed for the sustainable transition of TU Delft is the governance that forms the foundation of a sustainable community. Our sustainability core team deals with this theme. TU Delft intends to become an entirely sustainable organisation, not only by the measures implemented on the campus and the resulting carbon and circular performance, but also in the way the university is organised. Financial and regulative incentives (carbon pricing, Total cost of ownership, circular contracting) should steer processes towards sustainability. Total Cost of Ownership In order to support sustainable decisions, a long-term perspective on financial decisions is needed. TCO (total cost of ownership) includes exploitation costs and benefits and considers the residual value of a building or product and its materials. The capitalisation of environmental impact is also possible. Therefore, TCO will become the basis for financial decisions. Circular contracting Procurement of stationary, furniture, equipment, materials and services proved to be the greatest cause of carbon equivalent emissions at TU Delft. The embodied carbon of these products can only be tackled by a full supply chain approach, from producer to end-user. Therefore, circular contracting, which can secure the sustainable production, transport, maintenance and final stage handling, is essential to cut down on carbon emissions. We are already working with circular contracting. Internal carbon tax Based on various sources and to make amends for damages of the past, TU Delft is investigating the possibility to use a carbon price at the value of € 150 per tonne of CO2-equivalent and how to include this in its everyday financial system. This carbon price can possibly be used for financial decisions, to compare alternative plans, with selections of suppliers, for price adjustments, to define carbon budgets, and as value for an internal carbon tax (e.g. imposed on flights). Personal carbon budgets We are currently investigating the option of personal carbon budgets: a maximum CO2 emission budget that can be arranged per faculty or service department, and per employee or student. Organisational units and people can spend this budget the way they want to. A personal carbon budget can help to change behaviour and support conscientious decisions.

Book Presentation | Process Technology in the Netherlands: Past and Future

Book Presentation | Process Technology in the Netherlands: Past and Future Speech by Ernst Homburg For over a century process technology has been of crucial importance for the economic and social development of Western countries such as the Netherlands. The book Een eeuw chemische technologie in Nederland (2021) offers an overview of the development of chemical engineering and other sub-disciplines of process technology up to now. It analyzes how the field gradually acquired a more scientific basis. One after the other new subfields emerged, such as unit operations, chemical machinery and plant design, transport phenomena, catalysis, polymer science, chemical reaction engineering and biotechnology. In the Netherlands, due to an excellent collaboration between large chemical industries and the (technical universities), process technology became internationally leading, with founding fathers like Hans Kramers (transport phenomena), Dirk van Krevelen (chemical reaction engineering) and Jan de Boer (catalysis). Today the field is not just alive and kicking, but also has to face new challenges, such as reducing CO 2 -emissions, minimizing waste and becoming more cyclic and sustainable generally. A brief review will be presented of some promising technological options for enabling the energy and raw material transitions required. Examples include: electrification, C 1 -chemistry, the H 2 -economy, polymer-recycling, process intensification, the use of membranes, electrochemical conversion and multiple additional technological innovations. There is no doubt that the present societal challenges open up a world of chances and opportunities to future process engineers! Reference: Ton van Helvoort en Ernst Homburg, Een eeuw chemische technologie in Nederland. In opdracht van Stichting Hoogewerff-Fonds (Delft: Stichting Hoogewerff-Fonds, 2021). You can follow this lecture at 11:40 hrs in the CIE3 Room on Monday, April 4

Rates and Setups

Our rental and catering options show some of our standard possibilities. Of course, much more is possible, so please contact us to arrange everything according to your wishes in a personal (digital) conversation. Rates Setups Conference rooms Price per half-day *excempted from VAT Price per day *excempted from VAT Students TU Staff Regular Students TU Staff Regular Band Studio A, B en DJ Studio € 78.- € 158.- € 209.- € 122.- € 245.- € 326.- Photo Studio € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Pottery € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Woodworking Studio € 78.- € 158.- € 209.- € 122.- € 245.- € 326.- Dance Studio A € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Theatre Hall € 285.- € 467.- € 579.- € 392.- € 705.- € 896.- Dance Studio B € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Body & Mind € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Painting Studio € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Rhythm A € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Rhythm B € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Dance halls Price per hour *excempted from VAT Students TU Staff Regular Ballet Studio € 19.10 € 32.00 € 32.00 Dance Studio A € 19.10 € 32.00 € 32.00 Dance Studio B € 19.10 € 32.00 € 32.00 Rhythm A € 19.10 € 32.00 € 32.00 Rhythm B € 19.10 € 32.00 € 32.00 Visual art studios Price per hour *excempted from VAT Students TU Staff Regular Design Studio € 21.70 € 36.15 € 36.15 Painting Studio € 21.70 € 36.15 € 36.15 Photo Studio € 21.70 € 36.15 € 36.15 Pottery € 21.70 € 36.15 € 36.15 Screen Printing € 21.70 € 36.15 € 36.15 Woodworking Studio € 21.70 € 36.15 € 36.15 Sports halls Price per hour *excempted from VAT Students TU Staff Regular Aerobics € 33.00 € 53.70 € 53.70 Body & Mind € 33.00 € 53.70 € 53.70 Combat € 51.15 € 83.65 € 83.65 Climbing Wall Upon request Dojo € 36.15 € 58.90 € 58.90 Fitness Upon request Spinning € 37.75 € 61.95 € 61.95 X1 € 42.40 € 69.80 € 69.80 X2 € 42.40 € 69.80 € 69.80 X2a € 21.20 € 34.90 € 34.90 X2b € 21.20 € 34.90 € 34.90 X3 (One half) € 26.35 € 43.00 € 43.00 X3 (Entire Hall) € 48.85 € 80.60 € 80.60 Sports fields Price per hour *excempted from VAT Students TU Staff Regular Beachvolleyball field € 12.40 € 19.60 € 19.60 Artificial turf hockey € 42.40 € 69.80 € 69.80 Artificial turf soccer € 42.40 € 69.80 € 69.80 Rugby training field € 42.40 € 69.80 € 69.80 Rugby competition field € 42.40 € 69.80 € 69.80 Survival course € 50.60 € 83.65 € 83.65 Tennis court (balloon hall) € 17.00 € 27.65 € 27.65 Tennis court (outside) € 14.90 € 24.40 € 24.40 Music studios & theater hall Price per hour *excempted from VAT Students TU Staff Regular Band Studio A (per 2 hours) € 16.00 € 26.60 € 26.60 Band Studio B (per 2 hours) € 16,00 € 26,60 € 26,60 DJ Studio (per 2 hours) € 16,00 € 26,60 € 26,60 Music Studio (per 2 hours) € 16,00 € 26,60 € 26,60 Recording Sudio € 42.50 € 45.00 € 45.00 Rehearsal Studio's (per 2 hours) € 8.00 € 13.30 € 13.30 Theatre Hall € 26.60 € 59.65 € 88.60 The meeting rooms can be arranged in four different ways: square, u-set up, classroom or theater. Below you will find an overview of the number of people per arrangement per room. Square U-set up Classroom Theater Photo studio 24 18 26 50 Theatre Hall 40 30 50 175 Dance studio A 16 16 16 16 Dance studio B 14 14 14 14 Painting studio 20 16 20 30 Woodworking studio 6 6 nvt nvt Pottery studio 16 12 nvt 25 Band studio A 12 10 nvt 15 Band studio B 8 6 nvt 12 DJ Studio 8 6 nvt nvt Body & Mind 32 26 24 60 Rhythm A 20 16 20 30 Rhythm B 28 22 28 40

Filter results

Governance

Team Underlying or overarching all actions, pilots and projects proposed for the sustainable transition of TU Delft is the governance that forms the foundation of a sustainable community. Our sustainability core team deals with this theme. TU Delft intends to become an entirely sustainable organisation, not only by the measures implemented on the campus and the resulting carbon and circular performance, but also in the way the university is organised. Financial and regulative incentives (carbon pricing, Total cost of ownership, circular contracting) should steer processes towards sustainability. Total Cost of Ownership In order to support sustainable decisions, a long-term perspective on financial decisions is needed. TCO (total cost of ownership) includes exploitation costs and benefits and considers the residual value of a building or product and its materials. The capitalisation of environmental impact is also possible. Therefore, TCO will become the basis for financial decisions. Circular contracting Procurement of stationary, furniture, equipment, materials and services proved to be the greatest cause of carbon equivalent emissions at TU Delft. The embodied carbon of these products can only be tackled by a full supply chain approach, from producer to end-user. Therefore, circular contracting, which can secure the sustainable production, transport, maintenance and final stage handling, is essential to cut down on carbon emissions. We are already working with circular contracting. Internal carbon tax Based on various sources and to make amends for damages of the past, TU Delft is investigating the possibility to use a carbon price at the value of € 150 per tonne of CO2-equivalent and how to include this in its everyday financial system. This carbon price can possibly be used for financial decisions, to compare alternative plans, with selections of suppliers, for price adjustments, to define carbon budgets, and as value for an internal carbon tax (e.g. imposed on flights). Personal carbon budgets We are currently investigating the option of personal carbon budgets: a maximum CO2 emission budget that can be arranged per faculty or service department, and per employee or student. Organisational units and people can spend this budget the way they want to. A personal carbon budget can help to change behaviour and support conscientious decisions.

Book Presentation | Process Technology in the Netherlands: Past and Future

Book Presentation | Process Technology in the Netherlands: Past and Future Speech by Ernst Homburg For over a century process technology has been of crucial importance for the economic and social development of Western countries such as the Netherlands. The book Een eeuw chemische technologie in Nederland (2021) offers an overview of the development of chemical engineering and other sub-disciplines of process technology up to now. It analyzes how the field gradually acquired a more scientific basis. One after the other new subfields emerged, such as unit operations, chemical machinery and plant design, transport phenomena, catalysis, polymer science, chemical reaction engineering and biotechnology. In the Netherlands, due to an excellent collaboration between large chemical industries and the (technical universities), process technology became internationally leading, with founding fathers like Hans Kramers (transport phenomena), Dirk van Krevelen (chemical reaction engineering) and Jan de Boer (catalysis). Today the field is not just alive and kicking, but also has to face new challenges, such as reducing CO 2 -emissions, minimizing waste and becoming more cyclic and sustainable generally. A brief review will be presented of some promising technological options for enabling the energy and raw material transitions required. Examples include: electrification, C 1 -chemistry, the H 2 -economy, polymer-recycling, process intensification, the use of membranes, electrochemical conversion and multiple additional technological innovations. There is no doubt that the present societal challenges open up a world of chances and opportunities to future process engineers! Reference: Ton van Helvoort en Ernst Homburg, Een eeuw chemische technologie in Nederland. In opdracht van Stichting Hoogewerff-Fonds (Delft: Stichting Hoogewerff-Fonds, 2021). You can follow this lecture at 11:40 hrs in the CIE3 Room on Monday, April 4

Rates and Setups

Our rental and catering options show some of our standard possibilities. Of course, much more is possible, so please contact us to arrange everything according to your wishes in a personal (digital) conversation. Rates Setups Conference rooms Price per half-day *excempted from VAT Price per day *excempted from VAT Students TU Staff Regular Students TU Staff Regular Band Studio A, B en DJ Studio € 78.- € 158.- € 209.- € 122.- € 245.- € 326.- Photo Studio € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Pottery € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Woodworking Studio € 78.- € 158.- € 209.- € 122.- € 245.- € 326.- Dance Studio A € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Theatre Hall € 285.- € 467.- € 579.- € 392.- € 705.- € 896.- Dance Studio B € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Body & Mind € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Painting Studio € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Rhythm A € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Rhythm B € 164.- € 265.- € 331.- € 231.- € 412.- € 531.- Dance halls Price per hour *excempted from VAT Students TU Staff Regular Ballet Studio € 19.10 € 32.00 € 32.00 Dance Studio A € 19.10 € 32.00 € 32.00 Dance Studio B € 19.10 € 32.00 € 32.00 Rhythm A € 19.10 € 32.00 € 32.00 Rhythm B € 19.10 € 32.00 € 32.00 Visual art studios Price per hour *excempted from VAT Students TU Staff Regular Design Studio € 21.70 € 36.15 € 36.15 Painting Studio € 21.70 € 36.15 € 36.15 Photo Studio € 21.70 € 36.15 € 36.15 Pottery € 21.70 € 36.15 € 36.15 Screen Printing € 21.70 € 36.15 € 36.15 Woodworking Studio € 21.70 € 36.15 € 36.15 Sports halls Price per hour *excempted from VAT Students TU Staff Regular Aerobics € 33.00 € 53.70 € 53.70 Body & Mind € 33.00 € 53.70 € 53.70 Combat € 51.15 € 83.65 € 83.65 Climbing Wall Upon request Dojo € 36.15 € 58.90 € 58.90 Fitness Upon request Spinning € 37.75 € 61.95 € 61.95 X1 € 42.40 € 69.80 € 69.80 X2 € 42.40 € 69.80 € 69.80 X2a € 21.20 € 34.90 € 34.90 X2b € 21.20 € 34.90 € 34.90 X3 (One half) € 26.35 € 43.00 € 43.00 X3 (Entire Hall) € 48.85 € 80.60 € 80.60 Sports fields Price per hour *excempted from VAT Students TU Staff Regular Beachvolleyball field € 12.40 € 19.60 € 19.60 Artificial turf hockey € 42.40 € 69.80 € 69.80 Artificial turf soccer € 42.40 € 69.80 € 69.80 Rugby training field € 42.40 € 69.80 € 69.80 Rugby competition field € 42.40 € 69.80 € 69.80 Survival course € 50.60 € 83.65 € 83.65 Tennis court (balloon hall) € 17.00 € 27.65 € 27.65 Tennis court (outside) € 14.90 € 24.40 € 24.40 Music studios & theater hall Price per hour *excempted from VAT Students TU Staff Regular Band Studio A (per 2 hours) € 16.00 € 26.60 € 26.60 Band Studio B (per 2 hours) € 16,00 € 26,60 € 26,60 DJ Studio (per 2 hours) € 16,00 € 26,60 € 26,60 Music Studio (per 2 hours) € 16,00 € 26,60 € 26,60 Recording Sudio € 42.50 € 45.00 € 45.00 Rehearsal Studio's (per 2 hours) € 8.00 € 13.30 € 13.30 Theatre Hall € 26.60 € 59.65 € 88.60 The meeting rooms can be arranged in four different ways: square, u-set up, classroom or theater. Below you will find an overview of the number of people per arrangement per room. Square U-set up Classroom Theater Photo studio 24 18 26 50 Theatre Hall 40 30 50 175 Dance studio A 16 16 16 16 Dance studio B 14 14 14 14 Painting studio 20 16 20 30 Woodworking studio 6 6 nvt nvt Pottery studio 16 12 nvt 25 Band studio A 12 10 nvt 15 Band studio B 8 6 nvt 12 DJ Studio 8 6 nvt nvt Body & Mind 32 26 24 60 Rhythm A 20 16 20 30 Rhythm B 28 22 28 40
48118 results

Half height card - Default

Styling based on the availability of image, title, metadata and text

NWO funding for flexible power demand in electrically driven industry

NWO is funding two projects to explore ways to make the power demand of industry more flexible, allowing it to better align with future energy supplies. One of these projects, “DEFLAME,” is led by Machteld van den Broek from TU Delft. Solar and wind power generate variable amounts of electricity, while today’s industry demands a relatively constant supply. Adjustments are needed to prepare industry for a power supply based on sun and wind. These adjustments include technical, economic, and social adaptations that are being researched collaboratively by academic institutions and industry partners in these two projects. They also aim to address the barriers that hinder such adaptations. About DEFLAME DEFLAME stands for Direct Electrification of Industrial Heat Demand supported by Flexibility at Multiple Levels and their Exchanges (DEFLAME). This project aims to make the Dutch process industry—particularly the chemical and food industries—more resilient and climate-neutral by electrifying industrial heat using flexible solutions. Van den Broek explains, “For instance, we could scale installations up or down, store heat in underground systems, and/or store electricity in batteries, so that industry can better respond to fluctuations in the energy network.” This effort requires collaboration across multiple levels: technology, individual plants, industrial clusters, and national and international energy systems. DEFLAME focuses on removing obstacles to electrifying low-temperature heat (up to 400°C) with efficient technology. “This kind of heat is used in many processes. It’s essential to drive the right chemical reactions, and it’s also needed for drying, distillation, and evaporation processes. For example, in the crystallisation process to turn sugar beets into sugar, or in salt extraction,” Van den Broek explains. In crystallisation processes, for instance, mechanical vapour recompression can be used. In this process, vapours are compressed by an electrically driven compressor and then reused to heat the evaporator. “This saves energy, as it uses residual heat and allows for electricity to be sourced cleanly. With solar and wind, unlike with gas, the power supply is variable. If we want to electrify industry, businesses and technology need to be able to respond flexibly to this, for example, by storing heat as a cluster or building flexibility into the electrical system.” DEFLAME will identify strategies and institutional arrangements to unlock these solutions from multiple levels and with an interdisciplinary approach. Van den Broek states, “I look forward to taking an important step together with our partners to advance industrial electrification in the Netherlands. This is an essential part of the energy transition.” Consortium Partners The consortium partners include Atlas Copco, Cosun, ISPT, Nobian, Oranje Wind Power II C.V./RWE, Smart Port, Stedin, Tennet, TNO, TU Delft, and TU Eindhoven. Read the NWO press release . Prof.dr.ir. M.A. (Machteld) van den Broek

Students Amos Yusuf, Mick Dam & Bas Brouwer winners of Mekel Prize 2024

Master students Amos Yusuf, from the ME faculty (Mick Dam, from the EEMCS faculty and graduate Bas Brouwer have won the Mekel Prize 2024 for the best extra scientific activity at TU Delft: the development of an initiative that brings master students into the classroom teaching sciences to the younger generations. The prize was ceremonially awarded by prof Tim van den Hagen on 13 November after the Van Hasselt Lecture at the Prinsenhof, Delft. They received a statue of Professor Jan Mekel and 1.500,- to spend on their project. Insights into climate change are being openly doubted. Funding for important educational efforts and research are being withdrawn. Short clips – so called “reels” – on Youtube and TikTok threaten to simplify complex political and social problems. AI fakes befuddle what is true and what is not. The voices of science that contribute to those discussion with modesty, careful argument and scepticism, are drowned in noise. This poses a threat for universities like TU Delft, who strive to increase student numbers, who benefit from diverse student populations and aim to pass on their knowledge and scientific virtues to the next generation. It is, therefore, alarming that student enrolments to Bachelor and Master Programs at TU Delft have declined in the past year. Students in front of the class The project is aimed to make the sciences more appealing to the next generation. They have identified the problem that students tend miss out on the opportunity of entering a higher education trajectory in the Beta sciences – because they have a wrong picture of such education. In their mind, they depict it as boring and dry. In his pilot lecture at the Stanislas VMBO in Delft, Amos Yusuf has successfully challenged this image. He shared his enthusiasm for the field of robotics and presented himself as a positive role model to the pupils. And in return the excitement of the high school students is palpable in the videos and pictures from the day. The spark of science fills their eyes. Bas Brouwer Mick Dam are the founders of NUVO – the platform that facilitates the engagement of Master Students in high school education in Delft Their efforts offer TU Delft Master Students a valuable learning moment: By sharing insights from their fields with pupils at high school in an educational setting, our students can find identify their own misunderstandings of their subject, learn to speak in front of non-scientific audiences and peak into education as a work field they themselves might not have considered. An extraordinary commitment According to the Mekel jury, the project scored well on all the criteria (risk mitigation, inclusiveness, transparency and societal relevance). However, it was the extraordinary commitment of Amos who was fully immersed during his Master Project and the efforts of Brouwer and Dam that brought together teaching and research which is integral to academic culture that made the project stand out. About the Mekel Prize The Mekel Prize will be awarded to the most socially responsible research project or extra-scientific activity (e.g. founding of an NGO or organization, an initiative or realization of an event or other impactful project) by an employee or group of employees of TU Delft – projects that showcase in an outstanding fashion that they have been committed from the beginning to relevant moral and societal values and have been aware of and tried to mitigate as much as possible in innovative ways the risks involved in their research. The award recognizes such efforts and wants to encourage the responsible development of science and technology at TU Delft in the future. For furthermore information About the project: https://www.de-nuvo.nl/video-robotica-pilot/ About the Mekel Prize: https://www.tudelft.nl/en/tpm/our-faculty/departments/values-technology-and-innovation/sections/ethics-philosophy-of-technology/mekel-prize

New catheter technology promises safer and more efficient treatment of blood vessels

Each year, more than 200 million catheters are used worldwide to treat vascular diseases, including heart disease and artery stenosis. When navigating into blood vessels, friction between the catheter and the vessel wall can cause major complications. With a new innovative catheter technology, Mostafa Atalla and colleagues can change the friction from having grip to completely slippery with the flick of a switch. Their design improves the safety and efficiency of endovascular procedures. The findings have been published in IEEE. Catheter with variable friction The prototype of the new catheter features advanced friction control modules to precisely control the friction between the catheter and the vessel wall. The friction is modulated via ultrasonic vibrations, which overpressure the thin fluid layer. This innovative variable friction technology makes it possible to switch between low friction for smooth navigation through the vessel and high friction for optimal stability during the procedure. In a proof-of-concept, Atalla and his team show that the prototype significantly reduces friction, averaging 60% on rigid surfaces and 11% on soft surfaces. Experiments on animal aortic tissue confirm the promising results of this technology and its potential for medical applications. Fully assembled catheters The researchers tested the prototype during friction experiments on different tissue types. They are also investigating how the technology can be applied to other procedures, such as bowel interventions. More information Publicatie DOI : 10.1109/TMRB.2024.3464672 Toward Variable-Friction Catheters Using Ultrasonic Lubrication | IEEE Journals & Magazine | IEEE Xplore Mostafa Atalla: m.a.a.atalla@tudelft.nl Aimee Sakes: a.sakes@tudelft.nl Michaël Wiertlewski: m.wiertlewski@tudelft.nl Would you like to know more and/or attend a demonstration of the prototype please contact me: Fien Bosman, press officer Health TU Delft: f.j.bosman@tudelft.nl/ 0624953733

Full card - image & title only

No results matching your search query were found.

Full card - half image, title

No results matching your search query were found.

Full card - half image, title and abstract

No results matching your search query were found.