Card Overview

Jorge Fuentes Casillas

MSc student Jorge Fuentes was born in Guadalajara city in Mexico, the 21-August-1985, he studied Computational Engineering at the León Institute of Technology, in Mexico from 2003-08. He worked for 5 years in different private and public companies as a programmer and computer technician, being the Leon’s Government and Guanajuato Government where he worked the longest period of time (1.5 years and 2.5 years) as a public server, always doing his best since his work was going to be used by the people. He has always been interested on participating in social activities, making volunteering work in orphan houses and NGO’s working for reforestation projects and animal healthcare in León or making donations to other NGO’s. That’s why he continued his master studies in a different but really interesting area such as energy, where he felt that his work could have a more direct impact on behalf of the people, since the current work had more impact for private companies and he wants that his work can be directly beneficial for communities belonging to developing areas. The SET programme offered by the Delft University of Technology gave Jorge the possibility of applying his beliefs, in this master he was able to do his internship for an NGO named S3C (Solar for Subsaharan Schools and Communities) under the supervision of the Professor Olindo Isabella, the internship was held in Kenya (July-September 2015) and it consisted on designing a hybrid system using a PV System and biomass tanks in order to generate electricity, gas and heat by using photovoltaic panels, solar heaters for water and biogas from the cattle’s dung. As a student of the SET program he has faced many difficulties such as adaptation to the Dutch educational system and the fact of retaking studies after 5 years of working, making him to face difficult times but at the same time, he has never given up on his beliefs or his capacities, having a strong will power to that makes him to continue until the end of his studies. Now he has another opportunity to make his work beneficial for others, this will be thanks to the Thesis Project in which Jorge will work. The project consists to think, define, design and build smart primary schools in India by the elaboration of a blueprint, which will be used in order to build these schools depending on their needs (number of students, size of school, power demand, sanitation, amongst others). The blueprint must allow the scalability and it must fulfil the criteria of being sustainable, scalable and economic, making it a suitable place for expansion and modernization in the future with a minimal investment when t is required. This project will present challenges like a possible integration of the PV materials into the structure of the building amongst other challenges. This will be a multidisciplinary project where other areas like architecture and civil engineering will provide valuable information, here, the collaboration between the people working on this project will help to have a high quality product on behalf of the Indian children and reduce the drop of studies. CONTACT INFORMATION Room: LB 02.480 Phone: +31 (0)15 27 81654 Telefax: +31 (0)15 27 82968 e-mail J. A. Fuentes Casillas Photovoltaic Materials and Devices EWI Faculty - Delft University of Technology Mekelweg 4 2628 CD DELFT The Netherlands

The next phase in aircraft design

The aircraft design of the Flying-V is potentially much more efficient than the traditional “pipe with wings” design. The concept was received with great enthusiasm, but a lot of hard work will need to be done if the sustainable flying wing is to be ready by 2040. I n June 2019, TU Delft and KLM presented their plans for the Flying-V: an aircraft designed to save 20% on both fuel and emissions due to its unique shape. KLM is sponsoring the project for sustainable flying as part of its 100th anniversary programme. During celebrations to mark the event last October, the scale model and the mock-up of the interior of the Flying-V attracted huge interest, and the story was covered by numerous media, from Dutch Design Week to the DWDD talk show. “Something we had been working on for years was suddenly in the spotlight”, explains Roelof Vos, project leader of Flying-V and Assistant Professor of flight performance and propulsion. Checking the calculations A patent that appeared in the media first drew Vos’s attention in 2014. Graduate Justus Benad from TU Berlin had come up with a draft design for Airbus, for a flying wing with seating for 300 passengers. “Most new aircraft concepts aren’t radically different from current designs. This one intrigued me”, says Vos. “It promised a staggering 10% improvement in aerodynamic efficiency and a 2% reduction in take-off weight compared with a conventional aircraft. My immediate reaction was: as critical researchers, we have to check these claims thoroughly.” Vos also thought that he could improve the draft design: “We gave it an oval fuselage instead of a round pipe, and it became the Delft Flying-V.” The aerodynamics research based on this version improved the results even further than the original promising 10%. The prognosis for a lower take-off weight also turned out to be correct, although this was difficult to calculate for an aircraft that was still only a design on paper. “After consulting with experts from Airbus, we concluded that whatever else, the aircraft would not become heavier. Our claim is that the unladen weight will be 7% lower, but the total weight will depend on the interior and all the systems.” Construction weight The lower weight is largely due to the unique shape of the aircraft: “Passengers normally sit in the middle of the plane and the wings generate the lift; this force must then be transferred to the cabin. This requires extra construction weight, which is no longer needed in our design.” This is nothing new; it’s one of the ideas behind aircraft such as the Blended Wing Body planes (BWB), in which the wings, cabin and engines are designed as a single unit. “But the Blended Wing Body design is not attractive from an industrial perspective, as every aircraft needs to be designed individually, whereas the Flying V is easy to lengthen or shorten so you can build series of aircraft using 95% of the same parts”, explains Vos. Test model Work is currently underway in the Aeroplane Hall of the Faculty of Aerospace Engineering to construct a scale model of the Flying-V with a wingspan of three metres. Researcher Malcom Brown is heading the project. His students are closely involved, as they are with other parts of the project. “It’s great to see how much students learn from doing something practical like building a model that actually works”, says Brown. “Some of them aren’t as practical as others when it comes to things like drilling or filing, but that’s just as much part of the learning process. The model will be used for actual research flights, so we have to be as accurate as possible.” Measurement arm A 3D measurement arm with laser scanner was purchased specially for the job. “The measurement arm allows us to determine the precise shape and location of components to a tenth of a millimetre. In this way, we can check whether all the parts we have ordered satisfy our requirements and are positioned correctly”, explains Brown. Despite all this accuracy, building a test model is a nerve-racking business, right up to the last moment. “Real life is never the same as the calculations, so we won’t know whether the aircraft can really fly, or the flight characteristics, until the test flights. Wind tunnel tests, for example, have shown that the aircraft might be less stable at a certain high angle. This didn’t show up in the computer simulations”, he continues. “Scaling up wind tunnel measurements to life-size test models is always a huge challenge in aerospace engineering.” A doctoral candidate is currently looking into ways of improving the theory behind this scaling up process; the research will be of use to other projects too. Interior Professor of Environmental Ergonomics Peter Vink, who is working on the plane’s interior, isn’t troubled by the scaling-up problems. Part of the interior has been built to true size and is currently on display in the Faculty of Industrial Design Engineering. “We are using the project as an opportunity to improve comfort for passengers”, he says. Four winning ideas were chosen from a design competition for students. They related to beds, lounge seats, group seating and individual seats. The beds make it possible for economy-class passengers to sleep horizontally, according to Vink: “We place three beds one above another, whereby the middle bunk can be slid up allowing the bottom bunk to be used for seating during take-off and landing. This is necessary to provide fast escape routes in the event of evacuation. You don’t lose any seating, because three beds take up just as much space as three seats”, he explains. In the group seating, passengers sit opposite each other like they do on trains. “More than a quarter of all passengers fly in groups. Sitting opposite each other makes it easier to chat or play games with the children”, continues Vink. “The lounge seats allow you to sit in different positions, from chill to working with a laptop. It is important to change your position regularly, and with this seat, your position is determined by what you are doing.” The individual seats are not directly next to each other, but alternate and are mounted at an angle of 26 degrees to the aircraft’s flight direction. This is a safety regulation. “Sitting at too wide an angle to the plane’s flightpath is less safe if the plane crashes”, he explains. “But there’s another advantage to this arrangement: you have more leg and shoulder room.” Boarding and disembarking in these spots is also made easier because you can flip over the seat cushion. “You can also use the folded seat position if you want to sit a bit higher”, says Vink. Sustainability Sustainability was also taken into account in the interior design. “Interior constitutes weight, and the heavier the plane is, the more fuel you need. The seats we’ve designed are three to five kilos lighter than the current models. In the rest of the interior, we’ve tried to use as much openwork as possible, rather than solid structures, using generative design methods. This saves material and therefore weight.” Many of these ideas could be used in regular aircraft, but there are still some unanswered questions about the interior of the Flying-V. “For example, our plans don’t leave enough room for hand luggage”, says Vink. “Then again, we have until 2040 to think about it.” Still so much to do The media attention may have quietened down, but work behind the scenes is still in full swing. “This was an integrated project from the word go; all disciplines are involved. You don’t want to complete a fantastic aerodynamic design, only to discover that the finished product is far too heavy”, explains Vos. “So we recently met experts from across the sector to discuss the challenges they envisaged. We ended up with a list of almost 50 subjects that need further scrutiny.” They varied from highly practical to totally theoretical. “This new aircraft must be capable of landing and being serviced at existing airports. Imagine if you have to change an engine and they’re fitted on top of the wings. You can get to them using a crane at Schiphol, but what about at other airports in the world?” And there are more conceptual questions about the dynamic stability of the design. “You need to know precisely how the mass is distributed and how the aerodynamics change at different speeds”, says Vos. “We can measure some of this during the test flights, but a small test model doesn’t fly fast enough to be able to draw any definite conclusions. We can try to estimate it using existing methods, but these were designed for the existing models. So in order to do this, we need to come up with a clever way of combining the results of various tests and analyses.” Next phase All three of them agree about the need for a new configuration. “You can’t just carry on using the current solutions”, claims Vink. “Existing configurations only allow incremental, minor improvements”, adds Vos. “This may well be the first step in the next phase of aviation”, says Brown. “The sector knows that it needs to modernise. Not only for economic reasons because fuel is currently the biggest expense for aviation companies, but also because of the increasingly strict emissions policies.” So will we be flying in a Flying-V in 2040? “Airbus, Schiphol, KLM and other parties are already very enthusiastic. We’ll form a consortium next year, so that we can work more intensively on developing the design with all of these parties”, explains Vos. But the researcher is still erring on the side of caution. “There’s still so much that we don’t know about this aircraft; in another five years, we might even come to the conclusion that it’s not feasible after all.” Existing configurations only allow incremental, minor improvements Read more stories of Aerospace Engineering Roelof Vos, Malcom Brown, Peter Vink This is a Portrait of Science from Aerospace Engineering I n June 2019, TU Delft and KLM presented their plans for the Flying-V: an aircraft designed to save 20% on both fuel and emissions due to its unique shape. KLM is sponsoring the project for sustainable flying as part of its 100th anniversary programme. During celebrations to mark the event last October, the scale model and the mock-up of the interior of the Flying-V attracted huge interest, and the story was covered by numerous media, from Dutch Design Week to the DWDD talk show. “Something we had been working on for years was suddenly in the spotlight”, explains Roelof Vos, project leader of Flying-V and Assistant Professor of flight performance and propulsion. Checking the calculations A patent that appeared in the media first drew Vos’s attention in 2014. Graduate Justus Benad from TU Berlin had come up with a draft design for Airbus, for a flying wing with seating for 300 passengers. “Most new aircraft concepts aren’t radically different from current designs. This one intrigued me”, says Vos. “It promised a staggering 10% improvement in aerodynamic efficiency and a 2% reduction in take-off weight compared with a conventional aircraft. My immediate reaction was: as critical researchers, we have to check these claims thoroughly.” Vos also thought that he could improve the draft design: “We gave it an oval fuselage instead of a round pipe, and it became the Delft Flying-V.” The aerodynamics research based on this version improved the results even further than the original promising 10%. The prognosis for a lower take-off weight also turned out to be correct, although this was difficult to calculate for an aircraft that was still only a design on paper. “After consulting with experts from Airbus, we concluded that whatever else, the aircraft would not become heavier. Our claim is that the unladen weight will be 7% lower, but the total weight will depend on the interior and all the systems.” Construction weight The lower weight is largely due to the unique shape of the aircraft: “Passengers normally sit in the middle of the plane and the wings generate the lift; this force must then be transferred to the cabin. This requires extra construction weight, which is no longer needed in our design.” This is nothing new; it’s one of the ideas behind aircraft such as the Blended Wing Body planes (BWB), in which the wings, cabin and engines are designed as a single unit. “But the Blended Wing Body design is not attractive from an industrial perspective, as every aircraft needs to be designed individually, whereas the Flying V is easy to lengthen or shorten so you can build series of aircraft using 95% of the same parts”, explains Vos. Test model Work is currently underway in the Aeroplane Hall of the Faculty of Aerospace Engineering to construct a scale model of the Flying-V with a wingspan of three metres. Researcher Malcom Brown is heading the project. His students are closely involved, as they are with other parts of the project. “It’s great to see how much students learn from doing something practical like building a model that actually works”, says Brown. “Some of them aren’t as practical as others when it comes to things like drilling or filing, but that’s just as much part of the learning process. The model will be used for actual research flights, so we have to be as accurate as possible.” Measurement arm A 3D measurement arm with laser scanner was purchased specially for the job. “The measurement arm allows us to determine the precise shape and location of components to a tenth of a millimetre. In this way, we can check whether all the parts we have ordered satisfy our requirements and are positioned correctly”, explains Brown. Despite all this accuracy, building a test model is a nerve-racking business, right up to the last moment. “Real life is never the same as the calculations, so we won’t know whether the aircraft can really fly, or the flight characteristics, until the test flights. Wind tunnel tests, for example, have shown that the aircraft might be less stable at a certain high angle. This didn’t show up in the computer simulations”, he continues. “Scaling up wind tunnel measurements to life-size test models is always a huge challenge in aerospace engineering.” A doctoral candidate is currently looking into ways of improving the theory behind this scaling up process; the research will be of use to other projects too. Interior Professor of Environmental Ergonomics Peter Vink, who is working on the plane’s interior, isn’t troubled by the scaling-up problems. Part of the interior has been built to true size and is currently on display in the Faculty of Industrial Design Engineering. “We are using the project as an opportunity to improve comfort for passengers”, he says. Four winning ideas were chosen from a design competition for students. They related to beds, lounge seats, group seating and individual seats. The beds make it possible for economy-class passengers to sleep horizontally, according to Vink: “We place three beds one above another, whereby the middle bunk can be slid up allowing the bottom bunk to be used for seating during take-off and landing. This is necessary to provide fast escape routes in the event of evacuation. You don’t lose any seating, because three beds take up just as much space as three seats”, he explains. In the group seating, passengers sit opposite each other like they do on trains. “More than a quarter of all passengers fly in groups. Sitting opposite each other makes it easier to chat or play games with the children”, continues Vink. “The lounge seats allow you to sit in different positions, from chill to working with a laptop. It is important to change your position regularly, and with this seat, your position is determined by what you are doing.” The individual seats are not directly next to each other, but alternate and are mounted at an angle of 26 degrees to the aircraft’s flight direction. This is a safety regulation. “Sitting at too wide an angle to the plane’s flightpath is less safe if the plane crashes”, he explains. “But there’s another advantage to this arrangement: you have more leg and shoulder room.” Boarding and disembarking in these spots is also made easier because you can flip over the seat cushion. “You can also use the folded seat position if you want to sit a bit higher”, says Vink. Sustainability Sustainability was also taken into account in the interior design. “Interior constitutes weight, and the heavier the plane is, the more fuel you need. The seats we’ve designed are three to five kilos lighter than the current models. In the rest of the interior, we’ve tried to use as much openwork as possible, rather than solid structures, using generative design methods. This saves material and therefore weight.” Many of these ideas could be used in regular aircraft, but there are still some unanswered questions about the interior of the Flying-V. “For example, our plans don’t leave enough room for hand luggage”, says Vink. “Then again, we have until 2040 to think about it.” Still so much to do The media attention may have quietened down, but work behind the scenes is still in full swing. “This was an integrated project from the word go; all disciplines are involved. You don’t want to complete a fantastic aerodynamic design, only to discover that the finished product is far too heavy”, explains Vos. “So we recently met experts from across the sector to discuss the challenges they envisaged. We ended up with a list of almost 50 subjects that need further scrutiny.” They varied from highly practical to totally theoretical. “This new aircraft must be capable of landing and being serviced at existing airports. Imagine if you have to change an engine and they’re fitted on top of the wings. You can get to them using a crane at Schiphol, but what about at other airports in the world?” And there are more conceptual questions about the dynamic stability of the design. “You need to know precisely how the mass is distributed and how the aerodynamics change at different speeds”, says Vos. “We can measure some of this during the test flights, but a small test model doesn’t fly fast enough to be able to draw any definite conclusions. We can try to estimate it using existing methods, but these were designed for the existing models. So in order to do this, we need to come up with a clever way of combining the results of various tests and analyses.” Next phase All three of them agree about the need for a new configuration. “You can’t just carry on using the current solutions”, claims Vink. “Existing configurations only allow incremental, minor improvements”, adds Vos. “This may well be the first step in the next phase of aviation”, says Brown. “The sector knows that it needs to modernise. Not only for economic reasons because fuel is currently the biggest expense for aviation companies, but also because of the increasingly strict emissions policies.” So will we be flying in a Flying-V in 2040? “Airbus, Schiphol, KLM and other parties are already very enthusiastic. We’ll form a consortium next year, so that we can work more intensively on developing the design with all of these parties”, explains Vos. But the researcher is still erring on the side of caution. “There’s still so much that we don’t know about this aircraft; in another five years, we might even come to the conclusion that it’s not feasible after all.” Existing configurations only allow incremental, minor improvements Roelof Vos, Malcom Brown, Peter Vink This is a Portrait of Science from Aerospace Engineering Other Portraits of Science Design for a better world The future of architectural glass

Filter results

Jorge Fuentes Casillas

MSc student Jorge Fuentes was born in Guadalajara city in Mexico, the 21-August-1985, he studied Computational Engineering at the León Institute of Technology, in Mexico from 2003-08. He worked for 5 years in different private and public companies as a programmer and computer technician, being the Leon’s Government and Guanajuato Government where he worked the longest period of time (1.5 years and 2.5 years) as a public server, always doing his best since his work was going to be used by the people. He has always been interested on participating in social activities, making volunteering work in orphan houses and NGO’s working for reforestation projects and animal healthcare in León or making donations to other NGO’s. That’s why he continued his master studies in a different but really interesting area such as energy, where he felt that his work could have a more direct impact on behalf of the people, since the current work had more impact for private companies and he wants that his work can be directly beneficial for communities belonging to developing areas. The SET programme offered by the Delft University of Technology gave Jorge the possibility of applying his beliefs, in this master he was able to do his internship for an NGO named S3C (Solar for Subsaharan Schools and Communities) under the supervision of the Professor Olindo Isabella, the internship was held in Kenya (July-September 2015) and it consisted on designing a hybrid system using a PV System and biomass tanks in order to generate electricity, gas and heat by using photovoltaic panels, solar heaters for water and biogas from the cattle’s dung. As a student of the SET program he has faced many difficulties such as adaptation to the Dutch educational system and the fact of retaking studies after 5 years of working, making him to face difficult times but at the same time, he has never given up on his beliefs or his capacities, having a strong will power to that makes him to continue until the end of his studies. Now he has another opportunity to make his work beneficial for others, this will be thanks to the Thesis Project in which Jorge will work. The project consists to think, define, design and build smart primary schools in India by the elaboration of a blueprint, which will be used in order to build these schools depending on their needs (number of students, size of school, power demand, sanitation, amongst others). The blueprint must allow the scalability and it must fulfil the criteria of being sustainable, scalable and economic, making it a suitable place for expansion and modernization in the future with a minimal investment when t is required. This project will present challenges like a possible integration of the PV materials into the structure of the building amongst other challenges. This will be a multidisciplinary project where other areas like architecture and civil engineering will provide valuable information, here, the collaboration between the people working on this project will help to have a high quality product on behalf of the Indian children and reduce the drop of studies. CONTACT INFORMATION Room: LB 02.480 Phone: +31 (0)15 27 81654 Telefax: +31 (0)15 27 82968 e-mail J. A. Fuentes Casillas Photovoltaic Materials and Devices EWI Faculty - Delft University of Technology Mekelweg 4 2628 CD DELFT The Netherlands

The next phase in aircraft design

The aircraft design of the Flying-V is potentially much more efficient than the traditional “pipe with wings” design. The concept was received with great enthusiasm, but a lot of hard work will need to be done if the sustainable flying wing is to be ready by 2040. I n June 2019, TU Delft and KLM presented their plans for the Flying-V: an aircraft designed to save 20% on both fuel and emissions due to its unique shape. KLM is sponsoring the project for sustainable flying as part of its 100th anniversary programme. During celebrations to mark the event last October, the scale model and the mock-up of the interior of the Flying-V attracted huge interest, and the story was covered by numerous media, from Dutch Design Week to the DWDD talk show. “Something we had been working on for years was suddenly in the spotlight”, explains Roelof Vos, project leader of Flying-V and Assistant Professor of flight performance and propulsion. Checking the calculations A patent that appeared in the media first drew Vos’s attention in 2014. Graduate Justus Benad from TU Berlin had come up with a draft design for Airbus, for a flying wing with seating for 300 passengers. “Most new aircraft concepts aren’t radically different from current designs. This one intrigued me”, says Vos. “It promised a staggering 10% improvement in aerodynamic efficiency and a 2% reduction in take-off weight compared with a conventional aircraft. My immediate reaction was: as critical researchers, we have to check these claims thoroughly.” Vos also thought that he could improve the draft design: “We gave it an oval fuselage instead of a round pipe, and it became the Delft Flying-V.” The aerodynamics research based on this version improved the results even further than the original promising 10%. The prognosis for a lower take-off weight also turned out to be correct, although this was difficult to calculate for an aircraft that was still only a design on paper. “After consulting with experts from Airbus, we concluded that whatever else, the aircraft would not become heavier. Our claim is that the unladen weight will be 7% lower, but the total weight will depend on the interior and all the systems.” Construction weight The lower weight is largely due to the unique shape of the aircraft: “Passengers normally sit in the middle of the plane and the wings generate the lift; this force must then be transferred to the cabin. This requires extra construction weight, which is no longer needed in our design.” This is nothing new; it’s one of the ideas behind aircraft such as the Blended Wing Body planes (BWB), in which the wings, cabin and engines are designed as a single unit. “But the Blended Wing Body design is not attractive from an industrial perspective, as every aircraft needs to be designed individually, whereas the Flying V is easy to lengthen or shorten so you can build series of aircraft using 95% of the same parts”, explains Vos. Test model Work is currently underway in the Aeroplane Hall of the Faculty of Aerospace Engineering to construct a scale model of the Flying-V with a wingspan of three metres. Researcher Malcom Brown is heading the project. His students are closely involved, as they are with other parts of the project. “It’s great to see how much students learn from doing something practical like building a model that actually works”, says Brown. “Some of them aren’t as practical as others when it comes to things like drilling or filing, but that’s just as much part of the learning process. The model will be used for actual research flights, so we have to be as accurate as possible.” Measurement arm A 3D measurement arm with laser scanner was purchased specially for the job. “The measurement arm allows us to determine the precise shape and location of components to a tenth of a millimetre. In this way, we can check whether all the parts we have ordered satisfy our requirements and are positioned correctly”, explains Brown. Despite all this accuracy, building a test model is a nerve-racking business, right up to the last moment. “Real life is never the same as the calculations, so we won’t know whether the aircraft can really fly, or the flight characteristics, until the test flights. Wind tunnel tests, for example, have shown that the aircraft might be less stable at a certain high angle. This didn’t show up in the computer simulations”, he continues. “Scaling up wind tunnel measurements to life-size test models is always a huge challenge in aerospace engineering.” A doctoral candidate is currently looking into ways of improving the theory behind this scaling up process; the research will be of use to other projects too. Interior Professor of Environmental Ergonomics Peter Vink, who is working on the plane’s interior, isn’t troubled by the scaling-up problems. Part of the interior has been built to true size and is currently on display in the Faculty of Industrial Design Engineering. “We are using the project as an opportunity to improve comfort for passengers”, he says. Four winning ideas were chosen from a design competition for students. They related to beds, lounge seats, group seating and individual seats. The beds make it possible for economy-class passengers to sleep horizontally, according to Vink: “We place three beds one above another, whereby the middle bunk can be slid up allowing the bottom bunk to be used for seating during take-off and landing. This is necessary to provide fast escape routes in the event of evacuation. You don’t lose any seating, because three beds take up just as much space as three seats”, he explains. In the group seating, passengers sit opposite each other like they do on trains. “More than a quarter of all passengers fly in groups. Sitting opposite each other makes it easier to chat or play games with the children”, continues Vink. “The lounge seats allow you to sit in different positions, from chill to working with a laptop. It is important to change your position regularly, and with this seat, your position is determined by what you are doing.” The individual seats are not directly next to each other, but alternate and are mounted at an angle of 26 degrees to the aircraft’s flight direction. This is a safety regulation. “Sitting at too wide an angle to the plane’s flightpath is less safe if the plane crashes”, he explains. “But there’s another advantage to this arrangement: you have more leg and shoulder room.” Boarding and disembarking in these spots is also made easier because you can flip over the seat cushion. “You can also use the folded seat position if you want to sit a bit higher”, says Vink. Sustainability Sustainability was also taken into account in the interior design. “Interior constitutes weight, and the heavier the plane is, the more fuel you need. The seats we’ve designed are three to five kilos lighter than the current models. In the rest of the interior, we’ve tried to use as much openwork as possible, rather than solid structures, using generative design methods. This saves material and therefore weight.” Many of these ideas could be used in regular aircraft, but there are still some unanswered questions about the interior of the Flying-V. “For example, our plans don’t leave enough room for hand luggage”, says Vink. “Then again, we have until 2040 to think about it.” Still so much to do The media attention may have quietened down, but work behind the scenes is still in full swing. “This was an integrated project from the word go; all disciplines are involved. You don’t want to complete a fantastic aerodynamic design, only to discover that the finished product is far too heavy”, explains Vos. “So we recently met experts from across the sector to discuss the challenges they envisaged. We ended up with a list of almost 50 subjects that need further scrutiny.” They varied from highly practical to totally theoretical. “This new aircraft must be capable of landing and being serviced at existing airports. Imagine if you have to change an engine and they’re fitted on top of the wings. You can get to them using a crane at Schiphol, but what about at other airports in the world?” And there are more conceptual questions about the dynamic stability of the design. “You need to know precisely how the mass is distributed and how the aerodynamics change at different speeds”, says Vos. “We can measure some of this during the test flights, but a small test model doesn’t fly fast enough to be able to draw any definite conclusions. We can try to estimate it using existing methods, but these were designed for the existing models. So in order to do this, we need to come up with a clever way of combining the results of various tests and analyses.” Next phase All three of them agree about the need for a new configuration. “You can’t just carry on using the current solutions”, claims Vink. “Existing configurations only allow incremental, minor improvements”, adds Vos. “This may well be the first step in the next phase of aviation”, says Brown. “The sector knows that it needs to modernise. Not only for economic reasons because fuel is currently the biggest expense for aviation companies, but also because of the increasingly strict emissions policies.” So will we be flying in a Flying-V in 2040? “Airbus, Schiphol, KLM and other parties are already very enthusiastic. We’ll form a consortium next year, so that we can work more intensively on developing the design with all of these parties”, explains Vos. But the researcher is still erring on the side of caution. “There’s still so much that we don’t know about this aircraft; in another five years, we might even come to the conclusion that it’s not feasible after all.” Existing configurations only allow incremental, minor improvements Read more stories of Aerospace Engineering Roelof Vos, Malcom Brown, Peter Vink This is a Portrait of Science from Aerospace Engineering I n June 2019, TU Delft and KLM presented their plans for the Flying-V: an aircraft designed to save 20% on both fuel and emissions due to its unique shape. KLM is sponsoring the project for sustainable flying as part of its 100th anniversary programme. During celebrations to mark the event last October, the scale model and the mock-up of the interior of the Flying-V attracted huge interest, and the story was covered by numerous media, from Dutch Design Week to the DWDD talk show. “Something we had been working on for years was suddenly in the spotlight”, explains Roelof Vos, project leader of Flying-V and Assistant Professor of flight performance and propulsion. Checking the calculations A patent that appeared in the media first drew Vos’s attention in 2014. Graduate Justus Benad from TU Berlin had come up with a draft design for Airbus, for a flying wing with seating for 300 passengers. “Most new aircraft concepts aren’t radically different from current designs. This one intrigued me”, says Vos. “It promised a staggering 10% improvement in aerodynamic efficiency and a 2% reduction in take-off weight compared with a conventional aircraft. My immediate reaction was: as critical researchers, we have to check these claims thoroughly.” Vos also thought that he could improve the draft design: “We gave it an oval fuselage instead of a round pipe, and it became the Delft Flying-V.” The aerodynamics research based on this version improved the results even further than the original promising 10%. The prognosis for a lower take-off weight also turned out to be correct, although this was difficult to calculate for an aircraft that was still only a design on paper. “After consulting with experts from Airbus, we concluded that whatever else, the aircraft would not become heavier. Our claim is that the unladen weight will be 7% lower, but the total weight will depend on the interior and all the systems.” Construction weight The lower weight is largely due to the unique shape of the aircraft: “Passengers normally sit in the middle of the plane and the wings generate the lift; this force must then be transferred to the cabin. This requires extra construction weight, which is no longer needed in our design.” This is nothing new; it’s one of the ideas behind aircraft such as the Blended Wing Body planes (BWB), in which the wings, cabin and engines are designed as a single unit. “But the Blended Wing Body design is not attractive from an industrial perspective, as every aircraft needs to be designed individually, whereas the Flying V is easy to lengthen or shorten so you can build series of aircraft using 95% of the same parts”, explains Vos. Test model Work is currently underway in the Aeroplane Hall of the Faculty of Aerospace Engineering to construct a scale model of the Flying-V with a wingspan of three metres. Researcher Malcom Brown is heading the project. His students are closely involved, as they are with other parts of the project. “It’s great to see how much students learn from doing something practical like building a model that actually works”, says Brown. “Some of them aren’t as practical as others when it comes to things like drilling or filing, but that’s just as much part of the learning process. The model will be used for actual research flights, so we have to be as accurate as possible.” Measurement arm A 3D measurement arm with laser scanner was purchased specially for the job. “The measurement arm allows us to determine the precise shape and location of components to a tenth of a millimetre. In this way, we can check whether all the parts we have ordered satisfy our requirements and are positioned correctly”, explains Brown. Despite all this accuracy, building a test model is a nerve-racking business, right up to the last moment. “Real life is never the same as the calculations, so we won’t know whether the aircraft can really fly, or the flight characteristics, until the test flights. Wind tunnel tests, for example, have shown that the aircraft might be less stable at a certain high angle. This didn’t show up in the computer simulations”, he continues. “Scaling up wind tunnel measurements to life-size test models is always a huge challenge in aerospace engineering.” A doctoral candidate is currently looking into ways of improving the theory behind this scaling up process; the research will be of use to other projects too. Interior Professor of Environmental Ergonomics Peter Vink, who is working on the plane’s interior, isn’t troubled by the scaling-up problems. Part of the interior has been built to true size and is currently on display in the Faculty of Industrial Design Engineering. “We are using the project as an opportunity to improve comfort for passengers”, he says. Four winning ideas were chosen from a design competition for students. They related to beds, lounge seats, group seating and individual seats. The beds make it possible for economy-class passengers to sleep horizontally, according to Vink: “We place three beds one above another, whereby the middle bunk can be slid up allowing the bottom bunk to be used for seating during take-off and landing. This is necessary to provide fast escape routes in the event of evacuation. You don’t lose any seating, because three beds take up just as much space as three seats”, he explains. In the group seating, passengers sit opposite each other like they do on trains. “More than a quarter of all passengers fly in groups. Sitting opposite each other makes it easier to chat or play games with the children”, continues Vink. “The lounge seats allow you to sit in different positions, from chill to working with a laptop. It is important to change your position regularly, and with this seat, your position is determined by what you are doing.” The individual seats are not directly next to each other, but alternate and are mounted at an angle of 26 degrees to the aircraft’s flight direction. This is a safety regulation. “Sitting at too wide an angle to the plane’s flightpath is less safe if the plane crashes”, he explains. “But there’s another advantage to this arrangement: you have more leg and shoulder room.” Boarding and disembarking in these spots is also made easier because you can flip over the seat cushion. “You can also use the folded seat position if you want to sit a bit higher”, says Vink. Sustainability Sustainability was also taken into account in the interior design. “Interior constitutes weight, and the heavier the plane is, the more fuel you need. The seats we’ve designed are three to five kilos lighter than the current models. In the rest of the interior, we’ve tried to use as much openwork as possible, rather than solid structures, using generative design methods. This saves material and therefore weight.” Many of these ideas could be used in regular aircraft, but there are still some unanswered questions about the interior of the Flying-V. “For example, our plans don’t leave enough room for hand luggage”, says Vink. “Then again, we have until 2040 to think about it.” Still so much to do The media attention may have quietened down, but work behind the scenes is still in full swing. “This was an integrated project from the word go; all disciplines are involved. You don’t want to complete a fantastic aerodynamic design, only to discover that the finished product is far too heavy”, explains Vos. “So we recently met experts from across the sector to discuss the challenges they envisaged. We ended up with a list of almost 50 subjects that need further scrutiny.” They varied from highly practical to totally theoretical. “This new aircraft must be capable of landing and being serviced at existing airports. Imagine if you have to change an engine and they’re fitted on top of the wings. You can get to them using a crane at Schiphol, but what about at other airports in the world?” And there are more conceptual questions about the dynamic stability of the design. “You need to know precisely how the mass is distributed and how the aerodynamics change at different speeds”, says Vos. “We can measure some of this during the test flights, but a small test model doesn’t fly fast enough to be able to draw any definite conclusions. We can try to estimate it using existing methods, but these were designed for the existing models. So in order to do this, we need to come up with a clever way of combining the results of various tests and analyses.” Next phase All three of them agree about the need for a new configuration. “You can’t just carry on using the current solutions”, claims Vink. “Existing configurations only allow incremental, minor improvements”, adds Vos. “This may well be the first step in the next phase of aviation”, says Brown. “The sector knows that it needs to modernise. Not only for economic reasons because fuel is currently the biggest expense for aviation companies, but also because of the increasingly strict emissions policies.” So will we be flying in a Flying-V in 2040? “Airbus, Schiphol, KLM and other parties are already very enthusiastic. We’ll form a consortium next year, so that we can work more intensively on developing the design with all of these parties”, explains Vos. But the researcher is still erring on the side of caution. “There’s still so much that we don’t know about this aircraft; in another five years, we might even come to the conclusion that it’s not feasible after all.” Existing configurations only allow incremental, minor improvements Roelof Vos, Malcom Brown, Peter Vink This is a Portrait of Science from Aerospace Engineering Other Portraits of Science Design for a better world The future of architectural glass
48116 results

Half height card - Default

Styling based on the availability of image, title, metadata and text

Students Amos Yusuf, Mick Dam & Bas Brouwer winners of Mekel Prize 2024

Master students Amos Yusuf, from the ME faculty (Mick Dam, from the EEMCS faculty and graduate Bas Brouwer have won the Mekel Prize 2024 for the best extra scientific activity at TU Delft: the development of an initiative that brings master students into the classroom teaching sciences to the younger generations. The prize was ceremonially awarded by prof Tim van den Hagen on 13 November after the Van Hasselt Lecture at the Prinsenhof, Delft. They received a statue of Professor Jan Mekel and 1.500,- to spend on their project. Insights into climate change are being openly doubted. Funding for important educational efforts and research are being withdrawn. Short clips – so called “reels” – on Youtube and TikTok threaten to simplify complex political and social problems. AI fakes befuddle what is true and what is not. The voices of science that contribute to those discussion with modesty, careful argument and scepticism, are drowned in noise. This poses a threat for universities like TU Delft, who strive to increase student numbers, who benefit from diverse student populations and aim to pass on their knowledge and scientific virtues to the next generation. It is, therefore, alarming that student enrolments to Bachelor and Master Programs at TU Delft have declined in the past year. Students in front of the class The project is aimed to make the sciences more appealing to the next generation. They have identified the problem that students tend miss out on the opportunity of entering a higher education trajectory in the Beta sciences – because they have a wrong picture of such education. In their mind, they depict it as boring and dry. In his pilot lecture at the Stanislas VMBO in Delft, Amos Yusuf has successfully challenged this image. He shared his enthusiasm for the field of robotics and presented himself as a positive role model to the pupils. And in return the excitement of the high school students is palpable in the videos and pictures from the day. The spark of science fills their eyes. Bas Brouwer Mick Dam are the founders of NUVO – the platform that facilitates the engagement of Master Students in high school education in Delft Their efforts offer TU Delft Master Students a valuable learning moment: By sharing insights from their fields with pupils at high school in an educational setting, our students can find identify their own misunderstandings of their subject, learn to speak in front of non-scientific audiences and peak into education as a work field they themselves might not have considered. An extraordinary commitment According to the Mekel jury, the project scored well on all the criteria (risk mitigation, inclusiveness, transparency and societal relevance). However, it was the extraordinary commitment of Amos who was fully immersed during his Master Project and the efforts of Brouwer and Dam that brought together teaching and research which is integral to academic culture that made the project stand out. About the Mekel Prize The Mekel Prize will be awarded to the most socially responsible research project or extra-scientific activity (e.g. founding of an NGO or organization, an initiative or realization of an event or other impactful project) by an employee or group of employees of TU Delft – projects that showcase in an outstanding fashion that they have been committed from the beginning to relevant moral and societal values and have been aware of and tried to mitigate as much as possible in innovative ways the risks involved in their research. The award recognizes such efforts and wants to encourage the responsible development of science and technology at TU Delft in the future. For furthermore information About the project: https://www.de-nuvo.nl/video-robotica-pilot/ About the Mekel Prize: https://www.tudelft.nl/en/tpm/our-faculty/departments/values-technology-and-innovation/sections/ethics-philosophy-of-technology/mekel-prize

Full card - image & title only

No results matching your search query were found.

Full card - half image, title

No results matching your search query were found.

Full card - half image, title and abstract

No results matching your search query were found.